Results 1 to 10 of about 539 (144)

Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities. [PDF]

open access: yesAdv Differ Equ, 2018
In this paper we propose a new method for sharpening and refinements of some trigonometric inequalities.
Malešević B   +3 more
europepmc   +2 more sources

Monotonicity results and bounds for the inverse hyperbolic sine [PDF]

open access: yesJournal of Inequalities and Applications, 2009
In this note, we present monotonicity results of a function involving to the inverse hyperbolic sine.
B-N Guo   +14 more
core   +4 more sources

Geometric convexity of the generalized sine and the generalized hyperbolic sine [PDF]

open access: yes, 2013
In the paper, the authors prove that the generalized sine function $\sin_{p,q}(x)$ and the generalized hyperbolic sine function $\sinh_{p,q}(x)$ are geometrically concave and geometrically convex, respectively.
Jiang, Wei-Dong, Qi, Feng
core   +1 more source

Closed-form formulae for the derivatives of trigonometric functions at rational multiples of $\pi$ [PDF]

open access: yes, 2009
In this sequel to our recent note it is shown, in a unified manner, by making use of some basic properties of certain special functions, such as the Hurwitz zeta function, Lerch zeta function and Legendre chi function, that the values of all derivatives ...
Adamchik   +6 more
core   +3 more sources

On the Fresnel sine integral and the convolution

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 2003, Issue 37, Page 2327-2333, 2003., 2003
The Fresnel sine integral S(x), the Fresnel cosine integral C(x), and the associated functions S+(x), S−(x), C+(x), and C−(x) are defined as locally summable functions on the real line. Some convolutions and neutrix convolutions of the Fresnel sine integral and its associated functions with x+r, xr are evaluated.
Adem Kılıçman
wiley   +1 more source

On the Fresnel integrals and the convolution

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 2003, Issue 41, Page 2635-2643, 2003., 2003
The Fresnel cosine integral C(x), the Fresnel sine integral S(x), and the associated functions C+(x), C−(x), S+(x), and S−(x) are defined as locally summable functions on the real line. Some convolutions and neutrix convolutions of the Fresnel cosine integral and its associated functions with x+r and xr are evaluated.
Adem Kiliçman, Brian Fisher
wiley   +1 more source

On some trigonometric power sums

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 30, Issue 3, Page 185-191, 2002., 2002
Using the generating function method, the closed formulas for various power sums of trigonometric functions are established. The computer algebra system Maple is used to carry out the complex calculations.
Hongwei Chen
wiley   +1 more source

Diagonal recurrence relations for the Stirling numbers of the first kind [PDF]

open access: yes, 2015
In the paper, the author presents diagonal recurrence relations for the Stirling numbers of the first kind. As by-products, the author also recovers three explicit formulas for special values of the Bell polynomials of the second kind.Comment: 7 ...
Qi, Feng
core   +3 more sources

On the sine integral and the convolution

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 30, Issue 6, Page 365-375, 2002., 2002
The sine integral Si(λx) and the cosine integral Ci(λx) and their associated functions Si+(λx), Si−(λx), Ci+(λx), Ci−(λx) are defined as locally summable functions on the real line. Some convolutions of these functions and sin(μx), sin+(μx), and sin−(μx) are found.
Brian Fisher, Fatma Al-Sirehy
wiley   +1 more source

Derivative Polynomials and Closed-Form Higher Derivative Formulae [PDF]

open access: yes, 2009
In a recent paper, Adamchik [V.S. Adamchik, On the Hurwitz function for rational arguments, Appl. Math. Comp. 187 (2007) 3--12] expressed in a closed form symbolic derivatives of four functions belonging to the class of functions whose derivatives are ...
Cvijović, Djurdje
core   +2 more sources

Home - About - Disclaimer - Privacy