On some determinants involving the tangent function
Let $p$ be an odd prime and let $a,b\in\mathbb Z$ with $p\nmid ab$. In this paper we mainly evaluate $$T_p^{(\delta)}(a,b):=\det\left[\tan\pi\frac{aj^2+bk^2}p\right]_{\delta\le j,k\le (p-1)/2}\ \ (\delta=0,1).$$ For example, in the case $p\equiv3\pmod4 ...
Sun, Zhi-Wei
core
New approximation inequalities for circular functions. [PDF]
Zhu L, Nenezić M.
europepmc +1 more source
Refinements and generalizations of some inequalities of Shafer-Fink's type for the inverse sine function. [PDF]
Malešević B, Rašajski M, Lutovac T.
europepmc +1 more source
South African nose flies (Diptera, Calliphoridae, Rhiniinae): taxonomy, diversity, distribution and biology. [PDF]
Thomas-Cabianca A+3 more
europepmc +1 more source
Some Wilker and Cusa type inequalities for generalized trigonometric and hyperbolic functions. [PDF]
Huang LG, Yin L, Wang YL, Lin XL.
europepmc +1 more source
About some exponential inequalities related to the sinc function. [PDF]
Rašajski M, Lutovac T, Malešević B.
europepmc +1 more source
On approximating the modified Bessel function of the second kind. [PDF]
Yang ZH, Chu YM.
europepmc +1 more source
Antiferroptotic Activity of Phenothiazine Analogues: A Novel Therapeutic Strategy for Oxidative Stress Related Disease. [PDF]
Liu J+4 more
europepmc +1 more source
Complete monotonicity involving some ratios of gamma functions. [PDF]
Yang ZH, Zheng SZ.
europepmc +1 more source