Results 21 to 30 of about 126 (84)
The main objective of this research involves studying a new novel coupled pantograph system with fractional operators together with nonlocal antiperiodic integral boundary conditions. The system consists of nonlinear pantograph fractional equations which integrate with Caputo fractional operators and Hadamard integrals.
Gunaseelan Mani +4 more
wiley +1 more source
In this paper, we study the following second order scalar differential inclusion: bzxΦz′x′∈Azx+Gx,zx,z′x a.e on Λ=0,α under nonlinear general boundary conditions incorporating a large number of boundary problems including Dirichlet, Neumann, Neumann–Steklov, Sturm–Liouville, and periodic problems.
Droh Arsène Béhi +3 more
wiley +1 more source
Bounded solutions of Carathéodory differential inclusions: a bound sets approach
A bound sets technique is developed for Floquet problems of Carathéodory differential inclusions. It relies on the construction of either continuous or locally ipschitzian Lyapunov‐like bounding functions. Proceeding sequentially, the existence of bounded trajectories is then obtained. Nontrivial examples are supplied to illustrate our approach.
Jan Andres +2 more
wiley +1 more source
This article analyzes a complex coupled system of multipoint nonlinear boundary value problems involving Caputo‐type fractional discrete differential equations with multiple fractional q−integrals. We establish the uniqueness and existence of solutions using a rigorous approach grounded in fixed‐point theory, specifically Banach’s fixed‐point theorem ...
Hasanen A. Hammad +3 more
wiley +1 more source
Asymptotic formulas and critical exponents for two‐parameter nonlinear eigenvalue problems
We study the nonlinear two‐parameter problem −u″(x) + λu(x) q = μu(x) p, u(x) > 0, x ∈ (0, 1), u(0) = u(1) = 0. Here, 1 < q < p are constants and λ, μ > 0 are parameters. We establish precise asymptotic formulas with exact second term for variational eigencurve μ(λ) as λ → ∞.
Tetsutaro Shibata
wiley +1 more source
Multi-term fractional differential equations with nonlocal boundary conditions
We introduce and study a new kind of nonlocal boundary value problems of multi-term fractional differential equations. The existence and uniqueness results for the given problem are obtained by applying standard fixed point theorems.
Ahmad Bashir +3 more
doaj +1 more source
In this paper, we study a class of asymptotically linear fractional nonlocal boundary value problems depending on the fractional derivative of lower order; the nonlinear term may be sign‐changing. By using the theory of fixed point index for asymptotically linear operators and the Banach contraction mapping principle, the multiplicity and uniqueness of
You Wu +4 more
wiley +1 more source
On boundary value problems for degenerate differential inclusions in Banach spaces
We consider the applications of the theory of condensing set‐valued maps, the theory of set‐valued linear operators, and the topological degree theory of the existence of mild solutions for a class of degenerate differential inclusions in a reflexive Banach space.
Valeri Obukhovskii, Pietro Zecca
wiley +1 more source
Unbounded solutions of third order three-point boundary value problems on a half-line
We consider the following third order three-point boundary value problem on a half-line: x'''(t)+q(t)f(t,x(t),x'(t),x''(t)) = 0, t ∈ (0,+∞), x'(0) = A, x(η) = B, x''(+∞) = C, where η ∈ (0,+∞), but fixed, and f : [0,+∞) × ℝ3 → ℝ satisfies Nagumo's ...
Agarwal Ravi P., Çetin Erbil
doaj +1 more source
2‐Conformal Vector Fields on the Model Sol Space and Hyperbolic Ricci Solitons
In this study, we present the notion of 2‐conformal vector fields on Riemannian and semi‐Riemannian manifolds, which are an extension of Killing and conformal vector fields. Next, we provide suitable vector fields in Sol space that are 2‐conformal. A few implications of 2‐conformal vector fields in hyperbolic Ricci solitons are investigated.
Rawan Bossly +3 more
wiley +1 more source

