Results 21 to 30 of about 1,254 (112)

Noise effects in some stochastic evolution equations: Global existence and dependence on initial data

open access: yesAnnales De L Institut Henri Poincare-probabilites Et Statistiques, 2023
In this paper, we consider the noise effects on a class of stochastic evolution equations including the stochastic Camassa– Holm equations with or without rotation.
Hao Tang, Anita S Yang
semanticscholar   +1 more source

One-dimensional inverse problems of determining the kernel of the integro-differential heat equation in a bounded domain

open access: yesNonautonomous Dynamical Systems, 2023
The integro-differential equation of heat conduction with the time-convolution integral on the right side is considered. The direct problem is the initial-boundary problem for this integro-differential equation.
Durdiev Durdimurod Kalandarovich   +1 more
doaj   +1 more source

Concentrations for nonlinear Schrödinger equations with magnetic potentials and constant electric potentials

open access: yesAdvanced Nonlinear Studies, 2022
This article studies point concentration phenomena of nonlinear Schrödinger equations with magnetic potentials and constant electric potentials. The existing results show that a common magnetic field has no effect on the locations of point concentrations,
Wang Liping, Zhao Chunyi
doaj   +1 more source

Global well-posedness of the full compressible Hall-MHD equations

open access: yesAdvances in Nonlinear Analysis, 2021
This paper deals with a Cauchy problem of the full compressible Hall-magnetohydrodynamic flows. We establish the existence and uniqueness of global solution, provided that the initial energy is suitably small but the initial temperature allows large ...
Tao Qiang, Zhu Canze
doaj   +1 more source

Metrics with prescribed horizontal bundle on spaces of curve

open access: yes, 2015
We study metrics on the shape space of curves that induce a prescribed splitting of the tangent bundle. More specifically, we consider reparametrization invariant metrics $G$ on the space $\operatorname{Imm}(S^1,\mathbb R^2)$ of parametrized regular ...
Bauer, Martin, Harms, Philipp
core   +1 more source

L^2-concentration for a coupled nonlinear Schrödinger system

open access: yesDifferential Equations & Applications, 2019
In this work we adapt Bourgain’s ideas in [?] to a coupled system and we prove the L2 concentration of blow-up solutions for two-coupled nonlinear Schrödinger equations at critical dimension. Mathematics subject classification (2010): 35A01, 35Q55.
X. Carvajal, P. Gamboa
semanticscholar   +1 more source

Global solutions to a class of nonlinear damped wave operator equations

open access: yesBoundary Value Problems, 2012
This study investigates the existence of global solutions to a class of nonlinear damped wave operator equations. Dividing the differential operator into two parts, variational and non-variational structure, we obtain the existence, uniformly bounded and
Z. Pan, Zhilin Pu, T. Ma
semanticscholar   +2 more sources

Global well-posedness on the derivative nonlinear Schr\"odinger equation revisited

open access: yes, 2014
As a continuation of the previous work \cite{Wu}, we consider the global well-posedness for the derivative nonlinear Schr\"odinger equation. We prove that it is globally well-posed in energy space, provided that the initial data $u_0\in H^1(\mathbb{R ...
Wu, Yifei
core   +1 more source

The existence of positive solutions to an elliptic system with nonlinear boundary conditions

open access: yesBoundary Value Problems, 2013
In this paper, we consider the following system: {Δu=u,Δv=v,x∈Ω,∂u∂ν=f(x,v),∂v∂ν=g(x,u),x∈∂Ω, where Ω is a bounded domain in RN (N≥3) with smooth boundary, ∂∂ν is the outer normal derivative and f,g:∂Ω×R→R+ are positive and continuous functions.
Chunhua Wang, Jing Yang
semanticscholar   +2 more sources

Very large solutions for the fractional Laplacian: Towards a fractional Keller–Osserman condition

open access: yesAdvances in Nonlinear Analysis, 2017
We look for solutions of (-△)s⁢u+f⁢(u)=0{{\left(-\triangle\right)}^{s}u+f(u)=0} in a bounded smooth domain Ω, s∈(0,1){s\in(0,1)}, with a strong singularity at the boundary. In particular, we are interested in solutions which are L1⁢(Ω){L^{1}(\Omega)} and
Abatangelo Nicola
doaj   +1 more source

Home - About - Disclaimer - Privacy