Results 31 to 40 of about 1,232 (82)
Integral inequalities with an extended Poisson kernel and the existence of the extremals
In this article, we first apply the method of combining the interpolation theorem and weak-type estimate developed in Chen et al. to derive the Hardy-Littlewood-Sobolev inequality with an extended Poisson kernel.
Tao Chunxia, Wang Yike
doaj +1 more source
Decay Rate on the Radius of Spatial Analyticity to Solutions for the Modified Camassa–Holm Equation
The initial value problem associated with the modified Camassa–Holm equation for initial data u0(x) that is analytic on the line and having uniform radius of spatial analyticity σ0 is considered. We have shown the persistence of the radius of spatial analyticity till some time δ.
Tegegne Getachew, Yongqiang Fu
wiley +1 more source
On regular solutions to compressible radiation hydrodynamic equations with far field vacuum
The Cauchy problem for three-dimensional (3D) isentropic compressible radiation hydrodynamic equations is considered. When both shear and bulk viscosity coefficients depend on the mass density ρ\rho in a power law ρδ{\rho }^{\delta } (with ...
Li Hao, Zhu Shengguo
doaj +1 more source
On the singularly perturbation fractional Kirchhoff equations: Critical case
This article deals with the following fractional Kirchhoff problem with critical exponent a+b∫RN∣(−Δ)s2u∣2dx(−Δ)su=(1+εK(x))u2s∗−1,inRN,\left(a+b\mathop{\int }\limits_{{{\mathbb{R}}}^{N}}| {\left(-\Delta )}^{\tfrac{s}{2}}u\hspace{-0.25em}{| }^{2}{\rm{d ...
Gu Guangze, Yang Zhipeng
doaj +1 more source
Very large solutions for the fractional Laplacian: Towards a fractional Keller–Osserman condition
We look for solutions of (-△)su+f(u)=0{{\left(-\triangle\right)}^{s}u+f(u)=0} in a bounded smooth domain Ω, s∈(0,1){s\in(0,1)}, with a strong singularity at the boundary. In particular, we are interested in solutions which are L1(Ω){L^{1}(\Omega)} and
Abatangelo Nicola
doaj +1 more source
This article investigates new analytical wave solutions within the beta (β\beta ) fractional framework (Fκ\kappa IIAE and Fκ\kappa IIBE) of the Kuralay II equations, which are significant in the field of nonlinear optics.
Ege Serife Muge
doaj +1 more source
Blowup of Solutions of the Hydrostatic Euler Equations [PDF]
In this paper we prove that for a certain class of initial data, smooth solutions of the hydrostatic Euler equations blow up in finite time.Comment: 7 pages; added 1 reference in section 1, paraphrased lemma 2.2, but all mathematical details remain ...
Wong, Tak Kwong
core
Two solutions for Dirichlet double phase problems with variable exponents
This paper is devoted to the study of a double phase problem with variable exponents and Dirichlet boundary condition. Based on an abstract critical point theorem, we establish existence results under very general assumptions on the nonlinear term, such ...
Amoroso Eleonora +3 more
doaj +1 more source
In this article, we are interested in the existence of nontrivial solutions for the following nonhomogeneous Choquard equation involving the pp-biharmonic operator: M∫Ω∣Δu∣pdxΔp2u−Δpu=λ(∣x∣−μ⁎∣u∣q)∣u∣q−2u+∣u∣p*−2u+f,inΩ,u=Δu=0,on∂Ω,\left\{\begin{array}{l}
Hai Quan, Zhang Jing
doaj +1 more source
Global in time well-posedness of a three-dimensional periodic regularized Boussinesq system
Global in time weak solution to a regularized periodic three-dimensional Boussinesq system is proved to exist in energy spaces. This solution depends continuously on the initial data. In particular, it is unique.
Almutairi Shahah
doaj +1 more source

