Results 51 to 60 of about 1,254 (112)
Positive solutions for asymptotically linear Schrödinger equation on hyperbolic space
In this article, we study the following stationary Schrödinger equation on hyperbolic space: −ΔHNu+λu=f(u),x∈HN,N≥3,-{\Delta }_{{{\mathbb{H}}}^{N}}u+\lambda u=f\left(u),\hspace{1.0em}x\in {{\mathbb{H}}}^{N},\hspace{1em}N\ge 3, where ΔHN{\Delta }_ ...
Gao Dongmei, Wang Jun, Wang Zhengping
doaj +1 more source
We investigate the existence and nonexistence of nonnegative radial solutions to exterior problems of the form ΔHmu(q)+λψ(q)K(r(q))f(r2−Q(q),u(q))=0{\Delta }_{{{\mathbb{H}}}^{m}}u\left(q)+\lambda \psi \left(q)K\left(r\left(q))f\left({r}^{2-Q}\left(q),u ...
Jleli Mohamed
doaj +1 more source
Blowup of Solutions of the Hydrostatic Euler Equations [PDF]
In this paper we prove that for a certain class of initial data, smooth solutions of the hydrostatic Euler equations blow up in finite time.Comment: 7 pages; added 1 reference in section 1, paraphrased lemma 2.2, but all mathematical details remain ...
Wong, Tak Kwong
core
This article investigates new analytical wave solutions within the beta (β\beta ) fractional framework (Fκ\kappa IIAE and Fκ\kappa IIBE) of the Kuralay II equations, which are significant in the field of nonlinear optics.
Ege Serife Muge
doaj +1 more source
Existence result of the global attractor for a triply nonlinear thermistor problem
We study the existence and uniqueness of a bounded weak solution for a triply nonlinear thermistor problem in Sobolev spaces. Furthermore, we prove the existence of an absorbing set and, consequently, the universal attractor.
Ammi Moulay Rchid Sidi +3 more
doaj +1 more source
Euler-α equations in a three-dimensional bounded domain with Dirichlet boundary conditions
In this article, we investigate the Euler-α\alpha equations in a three-dimensional bounded domain. On the one hand, we prove in the Euler setting that the equations are locally well-posed with initial data in Hs(s≥3){H}^{s}\left(s\ge 3).
Yuan Shaoliang +3 more
doaj +1 more source
Global in time well-posedness of a three-dimensional periodic regularized Boussinesq system
Global in time weak solution to a regularized periodic three-dimensional Boussinesq system is proved to exist in energy spaces. This solution depends continuously on the initial data. In particular, it is unique.
Almutairi Shahah
doaj +1 more source
In this article, we are interested in the existence of nontrivial solutions for the following nonhomogeneous Choquard equation involving the pp-biharmonic operator: M∫Ω∣Δu∣pdxΔp2u−Δpu=λ(∣x∣−μ⁎∣u∣q)∣u∣q−2u+∣u∣p*−2u+f,inΩ,u=Δu=0,on∂Ω,\left\{\begin{array}{l}
Hai Quan, Zhang Jing
doaj +1 more source
On isolated singularities of Kirchhoff equations
In this note, we study isolated singular positive solutions of Kirchhoff ...
Chen Huyuan +2 more
doaj +1 more source
In this paper, the blow-up analyses in nonlocal reaction diffusion equations with time-dependent coefficients are investigated under Neumann boundary conditions.
Tian Huimin, Zhang Lingling
doaj +1 more source

