Results 21 to 30 of about 463 (50)
On a nonlinear Robin problem with an absorption term on the boundary and L1 data
We deal with existence and uniqueness of nonnegative solutions to: −Δu=f(x),inΩ,∂u∂ν+λ(x)u=g(x)uη,on∂Ω,\left\{\begin{array}{ll}-\Delta u=f\left(x),\hspace{1.0em}& \hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\Omega ,\\ \frac{\partial u}{\partial ...
Pietra Francesco Della+2 more
doaj +1 more source
Smooth counterexamples to strong unique continuation for a Beltrami system in $\mathbb{C}^2$ [PDF]
We construct an example of a smooth map $\mathbb{C}\to\mathbb{C}^2$ which vanishes to infinite order at the origin, and such that the ratio of the norm of the $\bar z$ derivative to the norm of the $z$ derivative also vanishes to infinite order.
Coffman, Adam, Pan, Yifei
core +3 more sources
We introduce a Littlewood-Paley characterization of modulation spaces and use it to give an alternative proof of the algebra property, somehow implicitly contained in Sugimoto (2011), of the intersection $M^s_{p,q}(\mathbb{R}^d) \cap M_{\infty, 1 ...
A Bényi+11 more
core +1 more source
Uniqueness of one-dimensional N\'eel wall profiles
We study the domain wall structure in thin uniaxial ferromagnetic films in the presence of an in-plane applied external field in the direction normal to the easy axis.
Muratov, Cyrill B., Yan, Xiaodong
core +1 more source
Dynamics for the diffusive Leslie-Gower model with double free boundaries
In this paper we investigate a free boundary problem for the diffusive Leslie-Gower prey-predator model with double free boundaries in one space dimension.
Wang, Mingxin, Zhang, Qianying
core +1 more source
In this article, we study the following Choquard equation: −Δu+u=(Iα⋆u2)u,x∈R3,-\Delta u+u=\left({{\rm{I}}}_{\alpha }\star {u}^{2})u,\hspace{1.0em}x\in {{\mathbb{R}}}^{3}, where Iα{{\rm{I}}}_{\alpha } is the Riesz potential and α\alpha is sufficiently ...
Luo Huxiao, Zhang Dingliang, Xu Yating
doaj +1 more source
Diffuse-interface approximation and weak–strong uniqueness of anisotropic mean curvature flow
The purpose of this paper is to derive anisotropic mean curvature flow as the limit of the anisotropic Allen–Cahn equation. We rely on distributional solution concepts for both the diffuse and sharp interface models and prove convergence using relative ...
Tim Laux+2 more
doaj +1 more source
The obstacle problem for subelliptic non-divergence form operators on homogeneous groups [PDF]
The main result established in this paper is the existence and uniqueness of strong solutions to the obstacle problem for a class of subelliptic operators in non-divergence form. The operators considered are structured on a set of smooth vector fields in
Frentz, Marie, Griffin, Heather
core
Bounded Solutions of the Boltzmann Equation in the Whole Space
We construct bounded classical solutions of the Boltzmann equation in the whole space without specifying any limit behaviors at the spatial infinity and without assuming the smallness condition on initial data. More precisely, we show that if the initial
Alexandre, Radjesvarane+4 more
core +5 more sources
This article studies the dynamical behaviour of classical solutions of a hyperbolic system of balance laws, derived from a chemotaxis model with logarithmic sensitivity, with time-dependent boundary conditions. It is shown that under suitable assumptions
Padi Fuster Aguilera, Kun Zhao
doaj +1 more source