Results 1 to 10 of about 158 (55)
Incompressible limit for compressible viscoelastic flows with large velocity
We are concerned with the incompressible limit of global-in-time strong solutions with arbitrary large initial velocity for the three-dimensional compressible viscoelastic equations.
Hu Xianpeng+3 more
doaj +1 more source
Background – Pruritus is the hallmark clinical sign of atopic dermatitis (AD) in dogs. Lokivetmab, a caninized anti‐canine IL‐31 monoclonal antibody, reduced pruritus and associated inflammatory skin lesions in a proof of concept study in dogs with AD.
Gina M. Michels+7 more
wiley +1 more source
The Poisson equation in homogeneous Sobolev spaces
We consider Poisson′s equation in an n‐dimensional exterior domain G(n ≥ 2) with a sufficiently smooth boundary. We prove that for external forces and boundary values given in certain Lq(G)‐spaces there exists a solution in the homogeneous Sobolev space S2,q(G), containing functions being local in Lq(G) and having second‐order derivatives in Lq(G ...
Tatiana Samrowski, Werner Varnhorn
wiley +1 more source
Generalized Cahn‐Hilliard equations based on a microforce balance
We present some models of Cahn‐Hilliard equations based on a microforce balance proposed by M. Gurtin. We then study the existence and uniqueness of solutions.
Alain Miranville
wiley +1 more source
Positive solutions of higher order quasilinear elliptic equations
The higher order quasilinear elliptic equation −Δ(Δp(Δu)) = f(x, u) subject to Dirichlet boundary conditions may have unique and regular positive solution. If the domain is a ball, we obtain a priori estimate to the radial solutions via blowup. Extensions to systems and general domains are also presented. The basic ingredients are the maximum principle,
Marcelo Montenegro
wiley +1 more source
We study the location of the peaks of solution for the critical growth problem −ε 2Δu+u=f(u)+u 2*−1, u > 0 in Ω, u = 0 on ∂Ω, where Ω is a bounded domain; 2* = 2N/(N − 2), N ≥ 3, is the critical Sobolev exponent and f has a behavior like up, 1 < p < 2* − 1.
Marco A. S. Souto
wiley +1 more source
Uniqueness of weak solution for nonlinear elliptic equations in divergence form
We study the uniqueness of weak solutions for quasilinear elliptic equations in divergence form. Some counterexamples are given to show that our uniqueness result cannot be improved in the general case.
Xu Zhang
wiley +1 more source
A Picard‐Maclaurin theorem for initial value PDEs
In 1988, Parker and Sochacki announced a theorem which proved that the Picard iteration, properly modified, generates the Taylor series solution to any ordinary differential equation (ODE) on ℜn with a polynomial generator. In this paper, we present an analogous theorem for partial differential equations (PDEs) with polynomial generators and analytic ...
G. Edgar Parker, James S. Sochacki
wiley +1 more source
Uniqueness and comparison principles for semilinear equations and inequalities in Carnot groups
Variants of the Kato inequality are proved for distributional solutions of semilinear equations and inequalities on Carnot groups. Various applications to uniqueness, comparison of solutions and Liouville theorems are presented.
D’Ambrosio Lorenzo, Mitidieri Enzo
doaj +1 more source
Oscillatory and periodic solutions to a diffusion equation of neutral type
We examine a PDE with piecewise constant time delay. The equation is of neutral type since it contains the derivative ut at different values of the t‐argument. Furthermore, the argument deviation changes its sign within intervals of unit length, so that the given PDE is alternately of retarded and advanced type.
Joseph Wiener, William Heller
wiley +1 more source