Results 21 to 30 of about 969 (93)
Critical Concave Convex Ambrosetti–Prodi Type Problems for Fractional 𝑝-Laplacian
In this paper, we consider a class of critical concave convex Ambrosetti–Prodi type problems involving the fractional p-Laplacian operator. By applying the linking theorem and the mountain pass theorem as well, the interaction of the nonlinearities with ...
Bueno H. P. +3 more
doaj +1 more source
This paper concerns the existence and multiplicity of solutions for the Schrődinger–Kirchhoff type problems involving the fractional p–Laplacian and critical exponent.
Xiang Mingqi +2 more
doaj +1 more source
The fractional Hartree equation without the Ambrosetti-Rabinowitz condition [PDF]
We consider a class of pseudo-relativistic Hartree equations in presence of general nonlinearities not satisfying the Ambrosetti-Rabinowitz condition.
Francesconi, Mauro, Mugnai, Dimitri
core +1 more source
Bäcklund transformations for several cases of a type of generalized KdV equation
An alternate generalized Korteweg‐de Vries system is studied here. A procedure for generating solutions is given. A theorem is presented, which is subsequently applied to this equation to obtain a type of Bäcklund transformation for several specific cases of the power of the derivative term appearing in the equation. In the process, several interesting,
Paul Bracken
wiley +1 more source
Variational approach to dynamics of bright solitons in lossy optical fibers
A variational analysis of dynamics of soliton solution of coupled nonlinear Schrödinger equations with oscillating terms is made, considering a birefringent fiber with a third‐order nonlinearity in the anomalous dispersion frequency region. This theoretical model predicts optical soliton oscillations in lossy fibers.
M. F. Mahmood, S. Brooks
wiley +1 more source
Eigenfrequencies of generally restrained beams
We deal with the exact determination of eigenfrequencies of a beam with intermediate elastic constraints and generally restrained ends. It is the purpose of this paper to use the calculus of variations to obtain the equations of motion and the natural boundary conditions, and particularly those at the intermediate constraints.
Ricardo Oscar Grossi +1 more
wiley +1 more source
Perturbations near resonance for the p‐Laplacian in ℝN
We study a multiplicity result for the perturbed p‐Laplacian equation −Δpu − λg(x)|u|p−2u = f(x, u) + h(x) in ℝN, where 1 < p < N and λ is near λ 1, the principal eigenvalue of the weighted eigenvalue problem −Δpu = λg(x)|u|p−2u in ℝN. Depending on which side λ is from λ 1, we prove the existence of one or three solutions.
To Fu Ma, Maurício Luciano Pelicer
wiley +1 more source
We study the location of the peaks of solution for the critical growth problem −ε 2Δu+u=f(u)+u 2*−1, u > 0 in Ω, u = 0 on ∂Ω, where Ω is a bounded domain; 2* = 2N/(N − 2), N ≥ 3, is the critical Sobolev exponent and f has a behavior like up, 1 < p < 2* − 1.
Marco A. S. Souto
wiley +1 more source
Higher-order Mechanics: Variational Principles and other topics [PDF]
After reviewing the Lagrangian-Hamiltonian unified formalism (i.e, the Skinner-Rusk formalism) for higher-order (non-autonomous) dynamical systems, we state a unified geometrical version of the Variational Principles which allows us to derive the ...
A. Echeverría-Enríquez +24 more
core +3 more sources
Multiple solutions for a problem with resonance involving the p‐Laplacian
In this paper we will investigate the existence of multiple solutions for the problem where Δpu = div(|∇u|p−2∇u) is the p‐Laplacian operator, Ω⫅ℝN is a bounded domain with smooth boundary, h and g are bounded functions, N ≥ 1 and 1 < p < ∞. Using the Mountain Pass Theorem and the Ekeland Variational Principle, we will show the existence of at least ...
C. O. Alves +2 more
wiley +1 more source

