Results 71 to 80 of about 1,013 (119)
In this paper, we consider the following critical fractional magnetic Choquard equation: ε2s(−Δ)A∕εsu+V(x)u=εα−N∫RN∣u(y)∣2s,α∗∣x−y∣αdy∣u∣2s,α∗−2u+εα−N∫RNF(y,∣u(y)∣2)∣x−y∣αdyf(x,∣u∣2)uinRN,\begin{array}{rcl}{\varepsilon }^{2s}{\left(-\Delta )}_{A ...
Jin Zhen-Feng +2 more
doaj +1 more source
Nonlinear equations involving the square root of the Laplacian
In this paper we discuss the existence and non-existence of weak solutions to parametric fractional equations involving the square root of the Laplacian $A_{1/2}$ in a smooth bounded domain $\Omega\subset \mathbb{R}^n$ ($n\geq 2$) and with zero Dirichlet
Ambrosio, Vincenzo +2 more
core +3 more sources
Least energy sign-changing solutions for Schrödinger-Poisson systems with potential well
In this article, we investigate the existence of least energy sign-changing solutions for the following Schrödinger-Poisson system −Δu+V(x)u+K(x)ϕu=f(u),x∈R3,−Δϕ=K(x)u2,x∈R3,\left\{\begin{array}{ll}-\Delta u+V\left(x)u+K\left(x)\phi u=f\left(u),\hspace{1.
Chen Xiao-Ping, Tang Chun-Lei
doaj +1 more source
A Functional Analytic Perspective to the div-curl Lemma [PDF]
We present an abstract functional analytic formulation of the celebrated $\dive$-$\curl$ lemma found by F.~Murat and L.~Tartar. The viewpoint in this note relies on sequences for operators in Hilbert spaces.
Waurick, Marcus
core +1 more source
Existence of solutions for a nonlinear problem at resonance
In this work, we are interested at the existence of nontrivial solutions for a nonlinear elliptic problem with resonance part and nonlinear boundary conditions. Our approach is variational and is based on the well-known Landesman-Laser-type conditions.
Haddaoui Mustapha +3 more
doaj +1 more source
Stability of Solitary Waves for a Generalized Derivative Nonlinear Schr\"odinger Equation [PDF]
We consider a derivative nonlinear Schr\"odinger equation with a general nonlinearity. This equation has a two parameter family of solitary wave solutions. We prove orbital stability/instability results that depend on the strength of the nonlinearity and,
Liu, Xiao +2 more
core
Local versus nonlocal elliptic equations: short-long range field interactions
In this paper we study a class of one-parameter family of elliptic equations which combines local and nonlocal operators, namely the Laplacian and the fractional Laplacian.
Cassani Daniele +2 more
doaj +1 more source
In this article, we investigate the following nonlinear Kirchhoff equation with Sobolev critical growth: −a+b∫R3∣∇u∣2dxΔu+λu=μf(u)+∣u∣4u,inR3,u>0,∫R3∣u∣2dx=m2,inR3,(Pm)\left\{\begin{array}{l}-\left(a+b\mathop{\displaystyle \int }\limits_{{{\mathbb{R ...
Zhang Shiyong, Zhang Qiongfen
doaj +1 more source
Multiple solutions for critical Choquard-Kirchhoff type equations
In this article, we investigate multiplicity results for Choquard-Kirchhoff type equations, with Hardy-Littlewood-Sobolev critical exponents,
Liang Sihua +2 more
doaj +1 more source
Bubbles clustered inside for almost-critical problems
We investigate the existence of blowing-up solutions of the following almost-critical problem: −Δu+V(x)u=up−ε,u>0inΩ,u=0on∂Ω,-\Delta u+V\left(x)u={u}^{p-\varepsilon },\hspace{1.0em}u\gt 0\hspace{0.25em}\hspace{0.1em}\text{in}\hspace{0.1em}\hspace{0.33em}\
Ayed Mohamed Ben, El Mehdi Khalil
doaj +1 more source

