Results 1 to 10 of about 341 (48)

Monotonicity and Symmetry of Nonnegative Solutions to -Δ u=f(u) in Half-Planes and Strips. [PDF]

open access: yesAdv Nonlinear Stud, 2017
We consider nonnegative solutions to -Δ⁢u=f⁢(u)${-\Delta u=f(u)}$ in half-planes and strips, under zero Dirichlet boundary condition. Exploiting a rotating and sliding line technique, we prove symmetry and monotonicity properties of the solutions, under ...
Farina A, Sciunzi B.
europepmc   +2 more sources

Symmetries of Ricci flows

open access: yesAdvances in Nonlinear Analysis, 2023
In the present work, we find the Lie point symmetries of the Ricci flow on an n-dimensional manifold, and we introduce a method in order to reutilize these symmetries to obtain the Lie point symmetries of particular metrics.
López Enrique   +2 more
doaj   +1 more source

Symmetric results of a Hénon-type elliptic system with coupled linear part

open access: yesOpen Mathematics, 2022
In this article, we study the elliptic system: −Δu+μ1u=∣x∣αu3+λv,x∈Ω−Δv+μ2v=∣x∣αv3+λu,x∈Ωu,v>0,x∈Ω,u=v=0,x∈∂Ω,\left\{\begin{array}{ll}-\Delta u+{\mu }_{1}u=| x\hspace{-0.25em}{| }^{\alpha }{u}^{3}+\lambda v,& x\in \Omega \\ -\Delta v+{\mu }_{2}v=| x ...
Lou Zhenluo, Li Huimin, Zhang Ping
doaj   +1 more source

Approximate nonradial solutions for the Lane-Emden problem in the ball

open access: yesAdvances in Nonlinear Analysis, 2021
In this paper we provide a numerical approximation of bifurcation branches from nodal radial solutions of the Lane Emden Dirichlet problem in the unit ball in ℝ2, as the exponent of the nonlinearity varies.
Fazekas Borbála   +2 more
doaj   +1 more source

Supplement a high-dimensional time fractional diffusion equation

open access: yesAlexandria Engineering Journal, 2023
In this article, we discussed a high-dimensional time fractional diffusion equation which is used to write many nonlinear phenomena in three dimensional space diffusion processes.
Jian-Gen Liu, Fa-Zhan Geng, Xin Li
doaj   +1 more source

On similarity solutions to (2+1)-dispersive long-wave equations

open access: yesJournal of Ocean Engineering and Science, 2023
This work is devoted to get a new family of analytical solutions of the (2+1)-coupled dispersive long wave equations propagating in an infinitely long channel with constant depth, and can be observed in an open sea or in wide channels.
Raj Kumar   +2 more
doaj   +1 more source

Monotonicity of solutions for fractional p-equations with a gradient term

open access: yesOpen Mathematics, 2022
In this paper, we consider the following fractional pp-equation with a gradient term: (−Δ)psu(x)=f(x,u(x),∇u(x)).{\left(-\Delta )}_{p}^{s}u\left(x)=f\left(x,u\left(x),\nabla u\left(x)). We first prove the uniqueness and monotonicity of positive solutions
Wang Pengyan
doaj   +1 more source

Standing waves to upper critical Choquard equation with a local perturbation: Multiplicity, qualitative properties and stability

open access: yesAdvances in Nonlinear Analysis, 2022
In this article, we consider the upper critical Choquard equation with a local perturbation −Δu=λu+(Iα∗∣u∣p)∣u∣p−2u+μ∣u∣q−2u,x∈RN,u∈H1(RN),∫RN∣u∣2=a,\left\{\begin{array}{l}-\Delta u=\lambda u+\left({I}_{\alpha }\ast | u\hspace{-0.25em}{| }^{p})| u\hspace{
Li Xinfu
doaj   +1 more source

A note on Serrin's overdetermined problem [PDF]

open access: yes, 2014
We consider the solution of the torsion problem $-\Delta u=1$ in $\Omega$ and $u=0$ on $\partial \Omega$. Serrin's celebrated symmetry theorem states that, if the normal derivative $u_\nu$ is constant on $\partial \Omega$, then $\Omega$ must be a ball ...
Ciraolo, Giulio, Magnanini, Rolando
core   +2 more sources

A note on an overdetermined problem for the capacitary potential [PDF]

open access: yes, 2016
We consider an overdetermined problem arising in potential theory for the capacitary potential and we prove a radial symmetry result.Comment: 7 pages. This paper has been written for possible publication in a special volume dedicated to the conference "
Bianchini, Chiara, Ciraolo, Giulio
core   +2 more sources

Home - About - Disclaimer - Privacy