Results 1 to 10 of about 60 (54)
From Hardy to Rellich inequalities on graphs
Abstract We show how to deduce Rellich inequalities from Hardy inequalities on infinite graphs. Specifically, the obtained Rellich inequality gives an upper bound on a function by the Laplacian of the function in terms of weighted norms. These weights involve the Hardy weight and a function which satisfies an eikonal inequality.
Matthias Keller+2 more
wiley +1 more source
We consider the existence and nonexistence of the positive solution for the following Brézis-Nirenberg problem with logarithmic perturbation: −Δu=∣u∣2∗−2u+λu+μulogu2x∈Ω,u=0x∈∂Ω,\left\{\phantom{\rule[-1.25em]{}{0ex}}\begin{array}{ll}-\Delta u={| u| }^{{2}^
Deng Yinbin+3 more
doaj +1 more source
Monotonicity of solutions for fractional p-equations with a gradient term
In this paper, we consider the following fractional pp-equation with a gradient term: (−Δ)psu(x)=f(x,u(x),∇u(x)).{\left(-\Delta )}_{p}^{s}u\left(x)=f\left(x,u\left(x),\nabla u\left(x)). We first prove the uniqueness and monotonicity of positive solutions
Wang Pengyan
doaj +1 more source
In this paper we study the existence and the nonexistence of solutions to an inhomogeneous non-linear elliptic problem (P)−Δu+u=F(u)+κμ in RN, u>0 in RN, u(x)→0 as |x|→∞,- \Delta u + u = F(u) + \kappa \mu \quad {\kern 1pt} {\rm in}{\kern 1pt ...
Ishige Kazuhiro+2 more
doaj +1 more source
Positive solution for a nonlocal problem with strong singular nonlinearity
In this article, we consider a nonlocal problem with a strong singular term and a general weight function. By using Ekeland’s variational principle, we prove a necessary and sufficient condition for the existence of a positive solution.
Wang Yue+3 more
doaj +1 more source
Sign changing solutions of Poisson's equation
Abstract Let Ω be an open, possibly unbounded, set in Euclidean space Rm with boundary ∂Ω, let A be a measurable subset of Ω with measure |A| and let γ∈(0,1). We investigate whether the solution vΩ,A,γ of −Δv=γ1Ω∖A−(1−γ)1A with v=0 on ∂Ω changes sign. Bounds are obtained for |A| in terms of geometric characteristics of Ω (bottom of the spectrum of the ...
M. van den Berg, D. Bucur
wiley +1 more source
In this study, we consider the following quasilinear Choquard equation with singularity −Δu+V(x)u−uΔu2+λ(Iα∗∣u∣p)∣u∣p−2u=K(x)u−γ,x∈RN,u>0,x∈RN,\left\{\begin{array}{ll}-\Delta u+V\left(x)u-u\Delta {u}^{2}+\lambda \left({I}_{\alpha }\ast | u{| }^{p})| u{| }
Shao Liuyang, Wang Yingmin
doaj +1 more source
On a fractional Schrödinger-Poisson system with strong singularity
We investigate a fractional Schrödinger-Poisson system with strong singularity as follows: (−Δ)su+V(x)u+λϕu=f(x)u−γ,x∈R3,(−Δ)tϕ=u2,x∈R3,u>0,x∈R3,\left\{\begin{array}{ll}{\left(-\Delta )}^{s}u+V\left(x)u+\lambda \phi u=f\left(x){u}^{-\gamma },& x\in ...
Yu Shengbin, Chen Jianqing
doaj +1 more source
We study positive solutions to the fractional Lane-Emden ...
Bhakta Mousomi, Nguyen Phuoc-Tai
doaj +1 more source
The present study is concerned with the following Schrödinger-Poisson system involving critical nonlocal ...
Shao Liuyang
doaj +1 more source