Results 21 to 30 of about 80 (62)
(p,Q) systems with critical singular exponential nonlinearities in the Heisenberg group
The paper deals with the existence of solutions for (p,Q)(p,Q) coupled elliptic systems in the Heisenberg group, with critical exponential growth at infinity and singular behavior at the origin.
Pucci Patrizia, Temperini Letizia
doaj +1 more source
This paper is concerned with existence and concentration properties of ground-state solutions to the following fractional Choquard equation with indefinite potential: (−Δ)su+V(x)u=∫RNA(εy)∣u(y)∣p∣x−y∣μdyA(εx)∣u(x)∣p−2u(x),x∈RN,{\left(-\Delta )}^{s}u+V ...
Zhang Wen, Yuan Shuai, Wen Lixi
doaj +1 more source
1 In this paper, we investigate the existence problem for positive solutions of the Yamabe type equation on the Heisenberg group H n , where ∆ H n is the Kohn-Spencer sublaplacian.
Bruno Bianchini, L. Mari, M. Rigoli
semanticscholar +1 more source
Positive solutions for a nonhomogeneous Schrödinger-Poisson system
In this article, we consider the following Schrödinger-Poisson system: −Δu+u+k(x)ϕ(x)u=f(x)∣u∣p−1u+g(x),x∈R3,−Δϕ=k(x)u2,x∈R3,\left\{\begin{array}{ll}-\Delta u+u+k\left(x)\phi \left(x)u=f\left(x)| u{| }^{p-1}u+g\left(x),& x\in {{\mathbb{R}}}^{3 ...
Zhang Jing, Niu Rui, Han Xiumei
doaj +1 more source
On entire solutions for an indefinite quasilinear system of mixed power
We prove non-existence and existence of entire positive solutions for a Schrodinger quasilinear elliptic system. To prove the non-existence, we combine a carefully-chosen test function with some results that we proved concerning the positivity of a kind ...
C. Santos, Mariana Reis
semanticscholar +1 more source
In this paper, we study the existence of periodic and non-negative periodic solutions of the nonlinear neutral differential equation ddtx(t)=−a (t) h (x (t))+ddtQ (t, x (t−τ (t)))+G (t, x(t), x (t−τ (t))).$${{\rm{d}} \over {{\rm{dt}}}}{\rm{x}}({\rm{t}}) =
Mesmouli Mouataz Billah+2 more
doaj +1 more source
Symmetric results of a Hénon-type elliptic system with coupled linear part
In this article, we study the elliptic system: −Δu+μ1u=∣x∣αu3+λv,x∈Ω−Δv+μ2v=∣x∣αv3+λu,x∈Ωu,v>0,x∈Ω,u=v=0,x∈∂Ω,\left\{\begin{array}{ll}-\Delta u+{\mu }_{1}u=| x\hspace{-0.25em}{| }^{\alpha }{u}^{3}+\lambda v,& x\in \Omega \\ -\Delta v+{\mu }_{2}v=| x ...
Lou Zhenluo, Li Huimin, Zhang Ping
doaj +1 more source
Touchdown solutions in general MEMS models
We study general problems modeling electrostatic microelectromechanical systems devices (Pλ )φ(r,−u′(r))=λ∫0rf(s)g(u(s))ds,r∈(0,1 ...
Clemente Rodrigo+3 more
doaj +1 more source
Ground states of Schrödinger systems with the Chern-Simons gauge fields
We are concerned with the following coupled nonlinear Schrödinger system: −Δu+u+∫∣x∣∞h(s)su2(s)ds+h2(∣x∣)∣x∣2u=∣u∣2p−2u+b∣v∣p∣u∣p−2u,x∈R2,−Δv+ωv+∫∣x∣∞g(s)sv2(s)ds+g2(∣x∣)∣x∣2v=∣v∣2p−2v+b∣u∣p∣v∣p−2v,x∈R2,\left\{\begin{array}{l}-\Delta u+u+\left(\underset{|
Jiang Yahui+4 more
doaj +1 more source