Results 31 to 40 of about 447 (79)
Groundstates of nonlinear Choquard equations: existence, qualitative properties and decay asymptotics [PDF]
We consider a semilinear elliptic problem [- \Delta u + u = (I_\alpha \ast \abs{u}^p) \abs{u}^{p - 2} u \quad\text{in (\mathbb{R}^N),}] where (I_\alpha) is a Riesz potential and (p>1).
Moroz, Vitaly, Van Schaftingen, Jean
core +1 more source
Nonzero positive solutions of a multi-parameter elliptic system with functional BCs
We prove, by topological methods, new results on the existence of nonzero positive weak solutions for a class of multi-parameter second order elliptic systems subject to functional boundary conditions. The setting is fairly general and covers the case of
Infante, Gennaro
core +1 more source
Multiple positive solutions for a class of p-Laplacian Neumann problems without growth conditions [PDF]
For $1p$. We use the shooting method to get existence and multiplicity of non-constant radial solutions. With the same technique, we also detect the oscillatory behavior of the solutions around the constant solution $u\equiv1$.
Boscaggin, Alberto +2 more
core +3 more sources
Supersolutions to nonautonomous Choquard equations in general domains
We consider the nonlocal quasilinear elliptic problem: −Δmu(x)=H(x)((Iα*(Qf(u)))(x))βg(u(x))inΩ,-{\Delta }_{m}u\left(x)=H\left(x){(\left({I}_{\alpha }* \left(Qf\left(u)))\left(x))}^{\beta }g\left(u\left(x))\hspace{1.0em}\hspace{0.1em}\text{in}\hspace{0 ...
Aghajani Asadollah, Kinnunen Juha
doaj +1 more source
A quasilinear problem with fast growing gradient
In this paper we consider the following Dirichlet problem for the $p$-Laplacian in the positive parameters $\lambda$ and $\beta$: [{{array} [c]{rcll}% -\Delta_{p}u & = & \lambda h(x,u)+\beta f(x,u,\nabla u) & \text{in}\Omega u & = & 0 & \text{on}\partial\
Bueno, Hamilton, Ercole, Grey
core +1 more source
The present study investigates the existence and non-degeneracy of normalized solutions for the following fractional Schrödinger equation: (−Δ)su+V(x)u=aup+μu,x∈RN,u∈Hs(RN){\left(-\Delta )}^{s}u+V\left(x)u=a{u}^{p}+\mu u,\hspace{1.0em}x\in {{\mathbb{R}}}^
Guo Qing, Zhang Yuhang
doaj +1 more source
Positive solutions for a nonhomogeneous Schrödinger-Poisson system
In this article, we consider the following Schrödinger-Poisson system: −Δu+u+k(x)ϕ(x)u=f(x)∣u∣p−1u+g(x),x∈R3,−Δϕ=k(x)u2,x∈R3,\left\{\begin{array}{ll}-\Delta u+u+k\left(x)\phi \left(x)u=f\left(x)| u{| }^{p-1}u+g\left(x),& x\in {{\mathbb{R}}}^{3 ...
Zhang Jing, Niu Rui, Han Xiumei
doaj +1 more source
Touchdown solutions in general MEMS models
We study general problems modeling electrostatic microelectromechanical systems devices (Pλ )φ(r,−u′(r))=λ∫0rf(s)g(u(s))ds,r∈(0,1 ...
Clemente Rodrigo +3 more
doaj +1 more source
Positive multipeak solutions to a zero mass problem in exterior domains
We establish the existence of positive multipeak solutions to the nonlinear scalar field equation with zero mass $$-\Delta u = f(u), \qquad u\in D_0^{1,2}(\Omega_R),$$ where $\Omega_R:=\{x \in \mathbb{R}^N:|u|>R\}$ with $R>0$, $N\geq4$, and the ...
Clapp, Mónica +2 more
core +1 more source
Beyond the classical strong maximum principle: Sign-changing forcing term and flat solutions
We show that the classical strong maximum principle, concerning positive supersolutions of linear elliptic equations vanishing on the boundary of the domain can be extended, under suitable conditions, to the case in which the forcing term is sign ...
Díaz Jesús Ildefonso +1 more
doaj +1 more source

