Results 41 to 50 of about 447 (79)
Increasing powers in a degenerate parabolic logistic equation [PDF]
The purpose of this paper is to study the asymptotic behavior of the positive solutions of the problem $$ \partial_t u-\Delta u=a u-b(x) u^p \text{in} \Omega\times \R^+, u(0)=u_0, u(t)|_{\partial \Omega}=0 $$ as $p\to +\infty$, where $\Omega$ is a ...
Hugo Tavares, Jose Francisco, Rodrigues
core
Multiple positive solutions to a p-Kirchhoff equation with logarithmic terms and concave terms
In this article, we focus on a class of pp-Kirchhoff-type equations that include logarithmic and concave terms. By applying the variational method, we establish the existence and multiplicity of positive solutions.
Liang Jin-Ping, Wang Ran-Ran, Wang Yue
doaj +1 more source
Ground State for a Coupled Elliptic System with Critical Growth
We study the following coupled elliptic system with critical nonlinearities:
Wu Huiling, Li Yongqing
doaj +1 more source
Ground states of Schrödinger systems with the Chern-Simons gauge fields
We are concerned with the following coupled nonlinear Schrödinger system: −Δu+u+∫∣x∣∞h(s)su2(s)ds+h2(∣x∣)∣x∣2u=∣u∣2p−2u+b∣v∣p∣u∣p−2u,x∈R2,−Δv+ωv+∫∣x∣∞g(s)sv2(s)ds+g2(∣x∣)∣x∣2v=∣v∣2p−2v+b∣u∣p∣v∣p−2v,x∈R2,\left\{\begin{array}{l}-\Delta u+u+\left(\underset{|
Jiang Yahui +4 more
doaj +1 more source
In this paper, we study a class of fractional Schrödinger equations involving logarithmic and critical non‐linearities on an unbounded domain, and show that such an equation with positive or sign‐changing weight potentials admits at least one positive ...
Haining Fan, Zhaosheng Feng, Xingjie Yan
doaj +1 more source
Supercritical Hénon-type equation with a forcing term
This article is concerned with the structure of solutions to the elliptic problem for a Hénon-type equation with a forcing term: −Δu=α(x)up+κμ,inRN,u>0,inRN,(Pκ)\hspace{11.3em}-\Delta u=\alpha \left(x){u}^{p}+\kappa \mu ,\hspace{1.0em}\hspace{0.1em}\text{
Ishige Kazuhiro, Katayama Sho
doaj +1 more source
We consider a so-called random obstacle model for the motion of a hypersurface through a field of random obstacles, driven by a constant driving field. The resulting semi-linear parabolic PDE with random coefficients does not admit a global nonnegative ...
G. R. Grimmett +7 more
core +3 more sources
The existence of L 2–normalized solutions is studied for the equation −Δu+μu=f(x,u) inRN,∫RNu2dx=m. $-{\Delta}u+\mu u=f\left(x,u\right)\quad \quad \text{in} {\mathbf{R}}^{N},\quad {\int }_{{\mathbf{R}}^{N}}{u}^{2} \mathrm{d}x=m.$ Here m > 0 and f(x, s)
Ikoma Norihisa, Yamanobe Mizuki
doaj +1 more source
The Dirichlet problem for fully nonlinear degenerate elliptic equations with a singular nonlinearity
We investigate the homogeneous Dirichlet problem in uniformly convex domains for a large class of degenerate elliptic equations with singular zero order term.
Birindelli, Isabeau, Galise, Giulio
core +1 more source
This article is concerned with the following Kirchhoff equation: −a+b∫R3∣∇u∣2dxΔu=g(u)+h(x)inR3,-\left(a+b\mathop{\int }\limits_{{{\mathbb{R}}}^{3}}{| \nabla u| }^{2}{\rm{d}}x\right)\Delta u=g\left(u)+h\left(x)\hspace{1em}{\rm{in}}\hspace{0.33em ...
Huang Lanxin, Su Jiabao
doaj +1 more source

