Positive solutions for asymptotically linear Schrödinger equation on hyperbolic space
In this article, we study the following stationary Schrödinger equation on hyperbolic space: −ΔHNu+λu=f(u),x∈HN,N≥3,-{\Delta }_{{{\mathbb{H}}}^{N}}u+\lambda u=f\left(u),\hspace{1.0em}x\in {{\mathbb{H}}}^{N},\hspace{1em}N\ge 3, where ΔHN{\Delta }_ ...
Gao Dongmei, Wang Jun, Wang Zhengping
doaj +1 more source
Ground State for a Coupled Elliptic System with Critical Growth
We study the following coupled elliptic system with critical nonlinearities:
Wu Huiling, Li Yongqing
doaj +1 more source
Symmetry of n-mode positive solutions for two-dimensional H\'enon type systems
We provide a symmetry result for n-mode positive solutions of a general class of semi-linear elliptic systems under cooperative conditions on the nonlinearities.
Shioji, Naoki, Squassina, Marco
core
On an evolution equation in sub-Finsler geometry
We study the gradient flow of an energy with mixed homogeneity, which is at the interface of Finsler and sub-Riemannian geometry.
Garofalo Nicola
doaj +1 more source
Solutions to the coupled Schrödinger systems with steep potential well and critical exponent
In the present paper, we consider the coupled Schrödinger systems with critical exponent:−Δui+λVi(x)+aiui=∑j=1dβijuj3uiui in R3,ui∈H1(RN),i=1,2,…,d, $$\begin{cases}-{\Delta}{u}_{i}+\left(\lambda {V}_{i}\left(x\right)+{a}_{i}\right){u}_{i}=\sum _{j=1}^{d}
Lv Zongyan, Tang Zhongwei
doaj +1 more source
A singular perturbation result for a class of periodic-parabolic BVPs
In this article, we obtain a very sharp version of some singular perturbation results going back to Dancer and Hess [Behaviour of a semilinear periodic-parabolic problem when a parameter is small, Lecture Notes in Mathematics, Vol. 1450, Springer-Verlag,
Cano-Casanova Santiago +2 more
doaj +1 more source
Concentration phenomena for a fractional relativistic Schrödinger equation with critical growth
In this paper, we are concerned with the following fractional relativistic Schrödinger equation with critical growth: (−Δ+m2)su+V(εx)u=f(u)+u2s*−1inRN,u∈Hs(RN),u>0inRN,\left\{\begin{array}{ll}{\left(-\Delta +{m}^{2})}^{s}u+V\left(\varepsilon x)u=f\left(u)
Ambrosio Vincenzo
doaj +1 more source
Existence of a bound state solution for quasilinear Schrödinger equations
In this article, we establish the existence of bound state solutions for a class of quasilinear Schrödinger equations whose nonlinear term is asymptotically linear in ℝN{\mathbb{R}^{N}}.
Xue Yan-Fang, Tang Chun-Lei
doaj +1 more source
A uniqueness result for the fractional Schrödinger-Poisson system with strong singularity
This article considers existence of solution for a class of fractional Schrödinger-Poisson system. By using the Nehari method and the variational method, we obtain a uniqueness result for positive solutions.
Wang Li +4 more
doaj +1 more source
Existence of a Positive Solution to a Nonlinear Scalar Field Equation with Zero Mass at Infinity
We establish the existence of a positive solution to the ...
Clapp Mónica, Maia Liliane A.
doaj +1 more source

