Results 11 to 20 of about 671 (67)

Nontrivial solution for Klein-Gordon equation coupled with Born-Infeld theory with critical growth

open access: yesAdvances in Nonlinear Analysis, 2023
In this article, we study the following system: −Δu+V(x)u−(2ω+ϕ)ϕu=λf(u)+∣u∣4u,inR3,Δϕ+βΔ4ϕ=4π(ω+ϕ)u2,inR3,\left\{\begin{array}{ll}-\Delta u+V\left(x)u-\left(2\omega +\phi )\phi u=\lambda f\left(u)+| u{| }^{4}u,& \hspace{0.1em}\text{in}\hspace{0.1em ...
He Chuan-Min, Li Lin, Chen Shang-Jie
doaj   +1 more source

Nonlinear elliptic–parabolic problem involving p-Dirichlet-to-Neumann operator with critical exponent

open access: yesAdvances in Nonlinear Analysis, 2023
We consider the nonlinear elliptic–parabolic boundary value problem involving the Dirichlet-to-Neumann operator of p-Laplace type at the critical Sobolev exponent.
Deng Yanhua, Tan Zhong, Xie Minghong
doaj   +1 more source

A global compactness result with applications to a Hardy-Sobolev critical elliptic system involving coupled perturbation terms

open access: yesAdvances in Nonlinear Analysis, 2022
In this article, we study a Hardy-Sobolev critical elliptic system involving coupled perturbation terms: (0.1)−Δu+V1(x)u=η1η1+η2∣u∣η1−2u∣v∣η2∣x′∣+αα+βQ(x)∣u∣α−2u∣v∣β,−Δv+V2(x)v=η2η1+η2∣v∣η2−2v∣u∣η1∣x′∣+βα+βQ(x)∣v∣β−2v∣u∣α,\left\{\begin{array}{c}-\Delta u+
Wang Lu Shun, Yang Tao, Yang Xiao Long
doaj   +1 more source

From Nash to Cournot-Nash equilibria via the Monge-Kantorovich problem [PDF]

open access: yes, 2014
The notion of Nash equilibria plays a key role in the analysis of strategic interactions in the framework of $N$ player games. Analysis of Nash equilibria is however a complex issue when the number of players is large.
Blanchet, Adrien, Carlier, Guillaume
core   +6 more sources

Fine bounds for best constants of fractional subcritical Sobolev embeddings and applications to nonlocal PDEs

open access: yesAdvances in Nonlinear Analysis, 2023
We establish fine bounds for best constants of the fractional subcritical Sobolev embeddings W0s,p(Ω)↪Lq(Ω),{W}_{0}^{s,p}(\Omega )\hspace{0.33em}\hookrightarrow \hspace{0.33em}{L}^{q}(\Omega ), where N≥1N\ge 1 ...
Cassani Daniele, Du Lele
doaj   +1 more source

Sharp nonexistence results for a linear elliptic inequality involving Hardy and Leray potentials [PDF]

open access: yes, 2010
In this paper we deal with nonnegative distributional supersolutions for a class of linear elliptic equations involving inverse-square potentials and logarithmic weights.
Fall, Mouhamed Moustapha   +1 more
core   +4 more sources

Standing waves to upper critical Choquard equation with a local perturbation: Multiplicity, qualitative properties and stability

open access: yesAdvances in Nonlinear Analysis, 2022
In this article, we consider the upper critical Choquard equation with a local perturbation −Δu=λu+(Iα∗∣u∣p)∣u∣p−2u+μ∣u∣q−2u,x∈RN,u∈H1(RN),∫RN∣u∣2=a,\left\{\begin{array}{l}-\Delta u=\lambda u+\left({I}_{\alpha }\ast | u\hspace{-0.25em}{| }^{p})| u\hspace{
Li Xinfu
doaj   +1 more source

On sufficient “local” conditions for existence results to generalized p(.)-Laplace equations involving critical growth

open access: yesAdvances in Nonlinear Analysis, 2022
In this article, we study the existence of multiple solutions to a generalized p(⋅)p\left(\cdot )-Laplace equation with two parameters involving critical growth.
Ho Ky, Sim Inbo
doaj   +1 more source

On the global existence for the axisymmetric Euler equations [PDF]

open access: yes, 2007
This paper deals with the global well-posedness of the 3D axisymmetric Euler equations for initial data lying in some critical Besov spacesComment: 14 ...
Abidi, Hammadi   +2 more
core   +3 more sources

Shooting with degree theory: Analysis of some weighted poly-harmonic systems [PDF]

open access: yes, 2014
In this paper, the author establishes the existence of positive entire solutions to a general class of semilinear poly-harmonic systems, which includes equations and systems of the weighted Hardy--Littlewood--Sobolev type.
Villavert, John
core   +1 more source

Home - About - Disclaimer - Privacy