Results 21 to 30 of about 74 (51)
Sign changing solutions of the Hardy–Sobolev–Maz'ya equation
In this article we will study the existence, multiplicity and Morse index of sign changing solutions for the Hardy–Sobolev–Maz'ya (HSM) equation in bounded domain and involving critical growth.
Ganguly Debdip
doaj +1 more source
In this article, we study the existence of ground state solutions for the Schrödinger-Poisson-Slater type equation with the Coulomb-Sobolev critical growth: −Δu+14π∣x∣∗∣u∣2u=∣u∣u+μ∣u∣p−2u,inR3,-\Delta u+\left(\frac{1}{4\pi | x| }\ast | u{| }^{2}\right)u=|
Lei Chunyu, Lei Jun, Suo Hongmin
doaj +1 more source
Existence of multiple solutions of p-fractional Laplace operator with sign-changing weight function
In this article, we study the following p-fractional Laplacian equation: (Pλ)-2∫ℝn|u(y)-u(x)|p-2(u(y)-u(x))|x-y|n+pαdy=λ|u(x)|p-2u(x)+b(x)|u(x)|β-2u(x)inΩ,u=0inℝn∖Ω,u∈Wα,p(ℝn),$ (P_{\lambda }) \quad -2\int _{\mathbb {R}^n}\frac{|u(y)-u(x)|^{p-2}(u(y)-u(x)
Goyal Sarika, Sreenadh Konijeti
doaj +1 more source
Fractional parabolic problems with a nonlocal initial condition
In this work we will consider a class of non local parabolic problems with nonlocal initial condition, more precisely we deal with the ...
Abdellaoui B.+2 more
doaj +1 more source
In this paper, we investigate the non-autonomous Choquard ...
Li Yong-Yong, Li Gui-Dong, Tang Chun-Lei
doaj +1 more source
Existence and Convergence of Solutions to Fractional Pure Critical Exponent Problems
We study existence and convergence properties of least-energy symmetric solutions (l.e.s.s.) to the pure critical exponent ...
Hernández-Santamaría Víctor+1 more
doaj +1 more source
Existence and nonexistence of global solutions of degenerate and singular parabolic systems
Abstract and Applied Analysis, Volume 5, Issue 4, Page 265-284, 2000.
Gabriella Caristi
wiley +1 more source
The purpose of this paper is to investigate the ground state solutions for the following nonlinear Schrödinger equations involving the fractional p-Laplacian (−Δ)psu(x)+λV(x)u(x)p−1=u(x)q−1,u(x)≥0,x∈RN,{\left(-\Delta )}_{p}^{s}u\left(x)+\lambda V\left(x ...
Chen Yongpeng, Niu Miaomiao
doaj +1 more source
Small perturbations of critical nonlocal equations with variable exponents
In this article, we are concerned with the following critical nonlocal equation with variable exponents: (−Δ)p(x,y)su=λf(x,u)+∣u∣q(x)−2uinΩ,u=0inRN\Ω,\left\{\begin{array}{ll}{\left(-\Delta )}_{p\left(x,y)}^{s}u=\lambda f\left(x,u)+{| u| }^{q\left(x)-2}u&
Tao Lulu, He Rui, Liang Sihua
doaj +1 more source
Weighted critical exponents of Sobolev-type embeddings for radial functions
In this article, we prove the upper weighted critical exponents for some embeddings from weighted Sobolev spaces of radial functions into weighted Lebesgue spaces. We also consider the lower critical exponent for certain embedding.
Su Jiabao, Wang Cong
doaj +1 more source