Results 31 to 40 of about 671 (67)
Critical fractional $p$-Laplacian problems with possibly vanishing potentials
We obtain nontrivial solutions of a critical fractional $p$-Laplacian equation in the whole space and with possibly vanishing potentials. In addition to the usual difficulty of the lack of compactness associated with problems involving critical Sobolev ...
Perera, Kanishka +2 more
core +1 more source
On Singular Liouville Equations and Systems
We consider some singular Liouville equations and systems motivated by uniformization problems in a non-smooth setting, as well as from models in mathematical physics.
Malchiodi Andrea
doaj +1 more source
A system of equations involving the fractional p-Laplacian and doubly critical nonlinearities
This article deals with existence of solutions to the following fractional pp-Laplacian system of equations: (−Δp)su=∣u∣ps*−2u+γαps*∣u∣α−2u∣v∣βinΩ,(−Δp)sv=∣v∣ps*−2v+γβps*∣v∣β−2v∣u∣αinΩ,\left\{\begin{array}{l}{\left(-{\Delta }_{p})}^{s}u={| u| }^{{p}_{s}^{
Bhakta Mousomi +2 more
doaj +1 more source
On Critical p-Laplacian Systems
We consider the critical p-Laplacian ...
Guo Zhenyu, Perera Kanishka, Zou Wenming
doaj +1 more source
(p,Q) systems with critical singular exponential nonlinearities in the Heisenberg group
The paper deals with the existence of solutions for (p,Q)(p,Q) coupled elliptic systems in the Heisenberg group, with critical exponential growth at infinity and singular behavior at the origin.
Pucci Patrizia, Temperini Letizia
doaj +1 more source
Sign changing solutions of the Hardy–Sobolev–Maz'ya equation
In this article we will study the existence, multiplicity and Morse index of sign changing solutions for the Hardy–Sobolev–Maz'ya (HSM) equation in bounded domain and involving critical growth.
Ganguly Debdip
doaj +1 more source
Existence of multiple solutions of p-fractional Laplace operator with sign-changing weight function
In this article, we study the following p-fractional Laplacian equation: (Pλ)-2∫ℝn|u(y)-u(x)|p-2(u(y)-u(x))|x-y|n+pαdy=λ|u(x)|p-2u(x)+b(x)|u(x)|β-2u(x)inΩ,u=0inℝn∖Ω,u∈Wα,p(ℝn),$ (P_{\lambda }) \quad -2\int _{\mathbb {R}^n}\frac{|u(y)-u(x)|^{p-2}(u(y)-u(x)
Goyal Sarika, Sreenadh Konijeti
doaj +1 more source
Small perturbations of critical nonlocal equations with variable exponents
In this article, we are concerned with the following critical nonlocal equation with variable exponents: (−Δ)p(x,y)su=λf(x,u)+∣u∣q(x)−2uinΩ,u=0inRN\Ω,\left\{\begin{array}{ll}{\left(-\Delta )}_{p\left(x,y)}^{s}u=\lambda f\left(x,u)+{| u| }^{q\left(x)-2}u&
Tao Lulu, He Rui, Liang Sihua
doaj +1 more source
We are concerned with the following quasilinear elliptic ...
Fang Xiangdong, Zhang Jianjun
doaj +1 more source
Asymptotic behavior for a viscous Hamilton-Jacobi equation with critical exponent [PDF]
The large time behavior of non-negative solutions to the viscous Hamilton-Jacobi equation $u_t - \Delta u + |\nabla u|^q = 0$ in the whole space $R^N$ is investigated for the critical exponent $q = (N+2)/(N+1)$.
Gallay, Thierry, Laurençot, Philippe
core +3 more sources

