Results 31 to 40 of about 720 (91)
Self-Similar Blow-Up Profiles for a Reaction-Diffusion Equation with Strong Weighted Reaction
We study the self-similar blow-up profiles associated to the following second-order reaction-diffusion equation with strong weighted reaction and unbounded weight:
Iagar Razvan Gabriel, Sánchez Ariel
doaj +1 more source
In this paper, we study the fractional Schrödinger-Poisson ...
Meng Yuxi, Zhang Xinrui, He Xiaoming
doaj +1 more source
On Singular Liouville Equations and Systems
We consider some singular Liouville equations and systems motivated by uniformization problems in a non-smooth setting, as well as from models in mathematical physics.
Malchiodi Andrea
doaj +1 more source
A system of equations involving the fractional p-Laplacian and doubly critical nonlinearities
This article deals with existence of solutions to the following fractional pp-Laplacian system of equations: (−Δp)su=∣u∣ps*−2u+γαps*∣u∣α−2u∣v∣βinΩ,(−Δp)sv=∣v∣ps*−2v+γβps*∣v∣β−2v∣u∣αinΩ,\left\{\begin{array}{l}{\left(-{\Delta }_{p})}^{s}u={| u| }^{{p}_{s}^{
Bhakta Mousomi+2 more
doaj +1 more source
Shooting with degree theory: Analysis of some weighted poly-harmonic systems [PDF]
In this paper, the author establishes the existence of positive entire solutions to a general class of semilinear poly-harmonic systems, which includes equations and systems of the weighted Hardy--Littlewood--Sobolev type.
Villavert, John
core +1 more source
On Critical p-Laplacian Systems
We consider the critical p-Laplacian ...
Guo Zhenyu, Perera Kanishka, Zou Wenming
doaj +1 more source
Existence of groundstates for a class of nonlinear Choquard equations [PDF]
We prove the existence of a nontrivial solution (u \in H^1 (\R^N)) to the nonlinear Choquard equation [- \Delta u + u = \bigl(I_\alpha \ast F (u)\bigr) F' (u) \quad \text{in (\R^N),}] where (I_\alpha) is a Riesz potential, under almost necessary ...
Jean, Van Schaftingen, Vitaly Moroz
core +1 more source
Sign changing solutions of the Hardy–Sobolev–Maz'ya equation
In this article we will study the existence, multiplicity and Morse index of sign changing solutions for the Hardy–Sobolev–Maz'ya (HSM) equation in bounded domain and involving critical growth.
Ganguly Debdip
doaj +1 more source
Existence of multiple solutions of p-fractional Laplace operator with sign-changing weight function
In this article, we study the following p-fractional Laplacian equation: (Pλ)-2∫ℝn|u(y)-u(x)|p-2(u(y)-u(x))|x-y|n+pαdy=λ|u(x)|p-2u(x)+b(x)|u(x)|β-2u(x)inΩ,u=0inℝn∖Ω,u∈Wα,p(ℝn),$ (P_{\lambda }) \quad -2\int _{\mathbb {R}^n}\frac{|u(y)-u(x)|^{p-2}(u(y)-u(x)
Goyal Sarika, Sreenadh Konijeti
doaj +1 more source
Existence of solutions for a general quasilinear elliptic system via perturbation method
In this paper, we consider the following quasilinear elliptic system: {−∑i,j=1NDj(aij(x,u)Diu)+12∑i,j=1NDsaij(x,u)DiuDju=2αα+β|u|α−2|v|βu,x∈Ω,−∑i,j=1NDj(bij(x,v)Div)+12∑i,j=1NDsbij(x,v)DivDjv=2βα+β|u|α|v|β−2v,x∈Ω,u=0,v=0,x∈∂Ω, where Diu=∂u∂xi, Dsaij(x,u)=
Y. Jiao, Shengmao Fu, Yanlin Wang
semanticscholar +2 more sources