Results 61 to 70 of about 724 (90)
Ground states for a fractional scalar field problem with critical growth
We prove the existence of a ground state solution for the following fractional scalar field equation $(-\Delta)^{s} u= g(u)$ in $\mathbb{R}^{N}$ where $s\in (0,1), N> 2s$,$ (-\Delta)^{s}$ is the fractional Laplacian, and $g\in C^{1, \beta}(\mathbb{R ...
Ambrosio, Vincenzo
core
In this article, we consider the multiplicity of positive solutions for a static Schrödinger-Poisson-Slater equation of the type −Δu+u2∗1∣4πx∣u=μf(x)∣u∣p−2u+g(x)∣u∣4uinR3,-\Delta u+\left({u}^{2}\ast \frac{1}{| 4\pi x| }\right)u=\mu f\left(x){| u| }^{p-2 ...
Zheng Tian-Tian +2 more
doaj +1 more source
Existence for (p, q) critical systems in the Heisenberg group
This paper deals with the existence of entire nontrivial solutions for critical quasilinear systems (𝓢) in the Heisenberg group ℍn, driven by general (p, q) elliptic operators of Marcellini types.
Pucci Patrizia, Temperini Letizia
doaj +1 more source
Let Δk{\Delta }_{k} be the Dunkl generalized Laplacian operator associated with a root system RR of RN{{\mathbb{R}}}^{N}, N≥2N\ge 2, and a nonnegative multiplicity function kk defined on RR and invariant by the finite reflection group WW.
Jleli Mohamed +2 more
doaj +1 more source
In this article, we consider the following double critical fractional Schrödinger-Poisson system involving p-Laplacian in R3{{\mathbb{R}}}^{3} of the form: εsp(−Δ)psu+V(x)∣u∣p−2u−ϕ∣u∣ps♯−2u=∣u∣ps*−2u+f(u)inR3,εsp(−Δ)sϕ=∣u∣ps♯inR3,\left\{\begin{array}{l}{\
Liang Shuaishuai +2 more
doaj +1 more source
Early-life conditioning strategies to reduce dietary phosphorus in broilers: underlying mechanisms. [PDF]
Valable AS +9 more
europepmc +1 more source
In this note, we obtain a classification result for positive solutions to the critical p-Laplace equation in Rn ${\mathbb{R}}^{n}$ with n ≥ 4 and p > p n for some number pn∈n3,n+13 ${p}_{n}\in \left(\frac{n}{3},\frac{n+1}{3}\right)$ such that pn∼n3+1n $
Vétois Jérôme
doaj +1 more source
Multiplicity of normalized solutions for nonlinear Choquard equations
In this paper, we consider the following nonlinear Choquard equation with prescribed L 2-norm: −Δu+λu=Iα∗F(u)f(u) in RN,∫RN|u|2dx=a>0,u∈H1(RN), $\begin{cases}-{\Delta}u+\lambda u=\left({I}_{\alpha }\ast F\left(u\right)\right)f\left(u\right) \,\text{in}\,
Long Chun-Fei +3 more
doaj +1 more source
Infinitely many solutions for Hamiltonian system with critical growth
In this article, we consider the following elliptic system of Hamiltonian-type on a bounded domain:−Δu=K1(∣y∣)∣v∣p−1v,inB1(0),−Δv=K2(∣y∣)∣u∣q−1u,inB1(0),u=v=0on∂B1(0),\left\{\begin{array}{ll}-\Delta u={K}_{1}\left(| y| ){| v| }^{p-1}v,\hspace{1.0em ...
Guo Yuxia, Hu Yichen
doaj +1 more source
Concentration phenomena for a fractional relativistic Schrödinger equation with critical growth
In this paper, we are concerned with the following fractional relativistic Schrödinger equation with critical growth: (−Δ+m2)su+V(εx)u=f(u)+u2s*−1inRN,u∈Hs(RN),u>0inRN,\left\{\begin{array}{ll}{\left(-\Delta +{m}^{2})}^{s}u+V\left(\varepsilon x)u=f\left(u)
Ambrosio Vincenzo
doaj +1 more source

