Results 1 to 10 of about 225 (63)

Nontrivial solutions of discrete Kirchhoff-type problems via Morse theory

open access: yesAdvances in Nonlinear Analysis, 2022
In this article, we study discrete Kirchhoff-type problems when the nonlinearity is resonant at both zero and infinity. We establish a series of results on the existence of nontrivial solutions by combining variational method with Morse theory.
Long Yuhua
doaj   +1 more source

Three solutions for discrete anisotropic Kirchhoff-type problems

open access: yesDemonstratio Mathematica, 2023
In this article, using critical point theory and variational methods, we investigate the existence of at least three solutions for a class of double eigenvalue discrete anisotropic Kirchhoff-type problems.
Bohner Martin   +3 more
doaj   +1 more source

Symmetric results of a Hénon-type elliptic system with coupled linear part

open access: yesOpen Mathematics, 2022
In this article, we study the elliptic system: −Δu+μ1u=∣x∣αu3+λv,x∈Ω−Δv+μ2v=∣x∣αv3+λu,x∈Ωu,v>0,x∈Ω,u=v=0,x∈∂Ω,\left\{\begin{array}{ll}-\Delta u+{\mu }_{1}u=| x\hspace{-0.25em}{| }^{\alpha }{u}^{3}+\lambda v,& x\in \Omega \\ -\Delta v+{\mu }_{2}v=| x ...
Lou Zhenluo, Li Huimin, Zhang Ping
doaj   +1 more source

Least energy sign-changing solutions for Schrödinger-Poisson systems with potential well

open access: yesAdvanced Nonlinear Studies, 2022
In this article, we investigate the existence of least energy sign-changing solutions for the following Schrödinger-Poisson system −Δu+V(x)u+K(x)ϕu=f(u),x∈R3,−Δϕ=K(x)u2,x∈R3,\left\{\begin{array}{ll}-\Delta u+V\left(x)u+K\left(x)\phi u=f\left(u),\hspace{1.
Chen Xiao-Ping, Tang Chun-Lei
doaj   +1 more source

Normalized solutions of Kirchhoff equations with Hartree-type nonlinearity

open access: yesAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, 2023
In the present paper, we prove the existence of the solutions (λ, u) ∈ ℝ × H1(ℝ3) to the following Kirchhoff equations with the Hartree-type nonlinearity under the general mass supercritical settings, {-(a+b∫ℝ3|∇u|2dx)Δu-λu=[Iα*(K(x)F(u))]K(x)f(u),u∈H1 ...
Yuan Shuai, Gao Yuning
doaj   +1 more source

Combined effects of Choquard and singular nonlinearities in fractional Kirchhoff problems

open access: yesAdvances in Nonlinear Analysis, 2020
The aim of this paper is to study the existence and multiplicity of solutions for a class of fractional Kirchho problems involving Choquard type nonlinearity and singular nonlinearity.
Wang Fuliang, Hu Die, Xiang Mingqi
doaj   +1 more source

Solvability of Parametric Elliptic Systems with Variable Exponents

open access: yesMoroccan Journal of Pure and Applied Analysis, 2023
In this paper, we study the solvability to the left of the positive infimum of all eigenvalues for some non-resonant quasilinear elliptic problems involving variable exponents.
Ouannasser Anass   +1 more
doaj   +1 more source

Equivalence between a time-fractional and an integer-order gradient flow: The memory effect reflected in the energy

open access: yesAdvances in Nonlinear Analysis, 2022
Time-fractional partial differential equations are nonlocal-in-time and show an innate memory effect. Previously, examples like the time-fractional Cahn-Hilliard and Fokker-Planck equations have been studied.
Fritz Marvin   +2 more
doaj   +1 more source

Smoothness of solutions of a convolution equation of restricted type on the sphere

open access: yesForum of Mathematics, Sigma, 2021
Let $\mathbb {S}^{d-1}$ denote the unit sphere in Euclidean space $\mathbb {R}^d$, $d\geq 2$, equipped with surface measure $\sigma _{d-1}$. An instance of our main result concerns the regularity of solutions of the convolution equation $$\begin{align*}a\
Diogo Oliveira e Silva, René Quilodrán
doaj   +1 more source

On a class of nonlocal nonlinear Schrödinger equations with potential well

open access: yesAdvances in Nonlinear Analysis, 2019
In this paper we investigate the existence, multiplicity and asymptotic behavior of positive solution for the nonlocal nonlinear Schrödinger equations. We exploiting the relationship between the Nehari manifold and eigenvalue problems to discuss how the ...
Wu Tsung-fang
doaj   +1 more source

Home - About - Disclaimer - Privacy