Results 11 to 20 of about 45 (45)
Combined effects of Choquard and singular nonlinearities in fractional Kirchhoff problems
The aim of this paper is to study the existence and multiplicity of solutions for a class of fractional Kirchho problems involving Choquard type nonlinearity and singular nonlinearity.
Wang Fuliang, Hu Die, Xiang Mingqi
doaj +1 more source
On a class of nonlocal nonlinear Schrödinger equations with potential well
In this paper we investigate the existence, multiplicity and asymptotic behavior of positive solution for the nonlocal nonlinear Schrödinger equations. We exploiting the relationship between the Nehari manifold and eigenvalue problems to discuss how the ...
Wu Tsung-fang
doaj +1 more source
Smoothness of solutions of a convolution equation of restricted type on the sphere
Let $\mathbb {S}^{d-1}$ denote the unit sphere in Euclidean space $\mathbb {R}^d$, $d\geq 2$, equipped with surface measure $\sigma _{d-1}$. An instance of our main result concerns the regularity of solutions of the convolution equation $$\begin{align*}a\
Diogo Oliveira e Silva, René Quilodrán
doaj +1 more source
Quasilinear equations with indefinite nonlinearity
In this paper, we are concerned with quasilinear equations with indefinite nonlinearity and explore the existence of infinitely many solutions.
Zhao Junfang +2 more
doaj +1 more source
Normalized solutions of Kirchhoff equations with Hartree-type nonlinearity
In the present paper, we prove the existence of the solutions (λ, u) ∈ ℝ × H1(ℝ3) to the following Kirchhoff equations with the Hartree-type nonlinearity under the general mass supercritical settings, {-(a+b∫ℝ3|∇u|2dx)Δu-λu=[Iα*(K(x)F(u))]K(x)f(u),u∈H1 ...
Yuan Shuai, Gao Yuning
doaj +1 more source
Infinitely many periodic solutions for ordinary p-Laplacian systems
Some existence theorems are obtained for infinitely many periodic solutions of ordinary p-Laplacian systems by minimax methods in critical point theory.
Li Chun, Agarwal Ravi P., Tang Chun-Lei
doaj +1 more source
Existence and multiplicity of solutions for a class of superlinear p-Laplacian equations
In this work, we investigate a class of pp-Laplacian equations with the Dirichlet boundary condition. Under some new conditions, the existence and multiplicity of nontrivial solutions are proved by means of the variational methods.
Zhao Tai-Jin, Li Chun
doaj +1 more source
Construction of Solutions for Hénon-Type Equation with Critical Growth
We consider the following Hénon-type problem with critical growth:
Guo Yuxia, Liu Ting
doaj +1 more source
Large Energy Bubble Solutions for Schrödinger Equation with Supercritical Growth
We consider the following nonlinear Schrödinger equation involving supercritical growth:
Guo Yuxia, Liu Ting
doaj +1 more source
The existence of L 2–normalized solutions is studied for the equation −Δu+μu=f(x,u) inRN,∫RNu2dx=m. $-{\Delta}u+\mu u=f\left(x,u\right)\quad \quad \text{in} {\mathbf{R}}^{N},\quad {\int }_{{\mathbf{R}}^{N}}{u}^{2} \mathrm{d}x=m.$ Here m > 0 and f(x, s)
Ikoma Norihisa, Yamanobe Mizuki
doaj +1 more source

