Results 11 to 20 of about 270 (53)
In this paper we are concerned with the existence of infinitely-many solutions for fractional Hamiltonian systems of the form tD∞α(-∞Dtαu(t))+L(t)u(t)=∇W(t,u(t))${\,}_tD^{\alpha }_{\infty }(_{-\infty }D^{\alpha }_{t}u(t))+L(t)u(t)=\nabla W(t,u(t ...
Zhang Ziheng, Yuan Rong
doaj +1 more source
Symmetric results of a Hénon-type elliptic system with coupled linear part
In this article, we study the elliptic system: −Δu+μ1u=∣x∣αu3+λv,x∈Ω−Δv+μ2v=∣x∣αv3+λu,x∈Ωu,v>0,x∈Ω,u=v=0,x∈∂Ω,\left\{\begin{array}{ll}-\Delta u+{\mu }_{1}u=| x\hspace{-0.25em}{| }^{\alpha }{u}^{3}+\lambda v,& x\in \Omega \\ -\Delta v+{\mu }_{2}v=| x ...
Lou Zhenluo, Li Huimin, Zhang Ping
doaj +1 more source
Absence of Critical Points of Solutions to the Helmholtz Equation in 3D [PDF]
The focus of this paper is to show the absence of critical points for the solutions to the Helmholtz equation in a bounded domain $\Omega\subset\mathbb{R}^{3}$, given by \[ \left\{ \begin{array}{l} -\rm{div}(a\,\nabla u_{\omega}^{g})-\omega qu_{\omega ...
Alberti, Giovanni S.
core +2 more sources
On a class of nonlocal nonlinear Schrödinger equations with potential well
In this paper we investigate the existence, multiplicity and asymptotic behavior of positive solution for the nonlocal nonlinear Schrödinger equations. We exploiting the relationship between the Nehari manifold and eigenvalue problems to discuss how the ...
Wu Tsung-fang
doaj +1 more source
Smoothness of solutions of a convolution equation of restricted type on the sphere
Let $\mathbb {S}^{d-1}$ denote the unit sphere in Euclidean space $\mathbb {R}^d$, $d\geq 2$, equipped with surface measure $\sigma _{d-1}$. An instance of our main result concerns the regularity of solutions of the convolution equation $$\begin{align*}a\
Diogo Oliveira e Silva, René Quilodrán
doaj +1 more source
Gradient flows as a selection procedure for equilibria of nonconvex energies [PDF]
For atomistic material models, global minimization gives the wrong qualitative behavior; a theory of equilibrium solutions needs to be defined in different terms.
Ortner, Christoph
core +1 more source
Infinitely many periodic solutions for ordinary p-Laplacian systems
Some existence theorems are obtained for infinitely many periodic solutions of ordinary p-Laplacian systems by minimax methods in critical point theory.
Li Chun, Agarwal Ravi P., Tang Chun-Lei
doaj +1 more source
Critical Points for Elliptic Equations with Prescribed Boundary Conditions [PDF]
This paper concerns the existence of critical points for solutions to second order elliptic equations of the form $\nabla\cdot \sigma(x)\nabla u=0$ posed on a bounded domain $X$ with prescribed boundary conditions. In spatial dimension $n=2$, it is known
Alberti, Giovanni S.+2 more
core +2 more sources
Robust transitivity for endomorphisms admitting critical points [PDF]
We address the problem of giving necessary and sufficient conditions in order to have robustly transitive endomorphisms admitting persistent critical sets.
Iglesias, Jorge+2 more
core +1 more source
Quasilinear equations with indefinite nonlinearity
In this paper, we are concerned with quasilinear equations with indefinite nonlinearity and explore the existence of infinitely many solutions.
Zhao Junfang+2 more
doaj +1 more source