Results 31 to 40 of about 45 (45)

Existence of solutions for a class of quasilinear Schrödinger equations with Choquard-type nonlinearity

open access: yesAdvances in Nonlinear Analysis
For the following quasilinear Choquard-type equation: −Δu−Δ(u2)u+V(x)u=(Iμ*∣u∣p)∣u∣p−2u,x∈RN,-\Delta u-\Delta \left({u}^{2})u+V\left(x)u=\left({I}_{\mu }* {| u| }^{p}){| u| }^{p-2}u,\hspace{1em}x\in {{\mathbb{R}}}^{N}, where N≥3 ...
Shen Zifei, Yang Ning
doaj   +1 more source

Normalized solutions to a class of (2, q)-Laplacian equations

open access: yesAdvanced Nonlinear Studies
This paper is concerned with the existence of normalized solutions to a class of (2, q)-Laplacian equations in all the possible cases with respect to the mass critical exponents 2(1 + 2/N), q(1 + 2/N).
Baldelli Laura, Yang Tao
doaj   +1 more source

On fractional p-Laplacian problems with local conditions

open access: yesAdvances in Nonlinear Analysis, 2018
In this paper, we deal with fractional p-Laplacian equations of the ...
Li Anran, Wei Chongqing
doaj   +1 more source

Multiple concentrating solutions for a fractional (p, q)-Choquard equation

open access: yesAdvanced Nonlinear Studies
We focus on the following fractional (p, q)-Choquard problem: (−Δ)psu+(−Δ)qsu+V(εx)(|u|p−2u+|u|q−2u)=1|x|μ*F(u)f(u) in RN,u∈Ws,p(RN)∩Ws,q(RN),u>0 in RN, $\begin{cases}{\left(-{\Delta}\right)}_{p}^{s}u+{\left(-{\Delta}\right)}_{q}^{s}u+V\left(\varepsilon ...
Ambrosio Vincenzo
doaj   +1 more source

Existence and multiplicity of solutions for a class of superlinear elliptic systems

open access: yesAdvances in Nonlinear Analysis, 2018
In this paper, we establish the existence and multiplicity of solutions for a class of superlinear elliptic systems without Ambrosetti and Rabinowitz growth condition. Our results are based on minimax methods in critical point theory.
Li Chun, Agarwal Ravi P., Wu Dong-Lun
doaj   +1 more source

Normalized solutions for nonlinear Schrödinger systems with critical exponents

open access: yesAdvanced Nonlinear Studies
In this paper, we consider the following nonlocal Schrödinger system−a+b∫R3|∇u1|2dxΔu1=λ1u1+μ1|u1|p1−2u1+βr1|u1|r1−2u1|u2|r2,−a+b∫R3|∇u2|2dxΔu2=λ2u2+μ2|u2|p2−2u2+βr2|u1|r1|u2|r2−2u2,∫R3|u1|2dx=c1,∫R3|u2|2dx=c2.
Hu Jiaqing, Mao Anmin
doaj   +1 more source

Existence of a Heteroclinic Solution for a~Double Well Potential Equation in an Infinite Cylinder of ℝN

open access: yesAdvanced Nonlinear Studies, 2019
This paper is concerned with the existence of a heteroclinic solution for the following class of elliptic equations:
Alves Claudianor O.
doaj   +1 more source

Infinitely many normalized solutions for Schrödinger equations with local sublinear nonlinearity

open access: yesDemonstratio Mathematica
In this article, we investigate the following Schrödinger equation: −Δu=h(x)g(u)+λuinRN,∫RN∣u∣2dx=au∈H1(RN),\left\{\begin{array}{ll}-\Delta u=h\left(x)g\left(u)+\lambda u\hspace{1.0em}& \hspace{-0.2em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{
Xu Qin, Li Gui-Dong
doaj   +1 more source

A uniqueness result for the fractional Schrödinger-Poisson system with strong singularity

open access: yesOpen Mathematics
This article considers existence of solution for a class of fractional Schrödinger-Poisson system. By using the Nehari method and the variational method, we obtain a uniqueness result for positive solutions.
Wang Li   +4 more
doaj   +1 more source

Home - About - Disclaimer - Privacy