Wiener criteria for existence of large solutions of quasilinear elliptic equations with absorption [PDF]
We obtain sufficient conditions expressed in terms of Wiener type tests involving Hausdorff or Bessel capacities for the existence of large solutions to equations (1) $-\Gd_pu+e^{\lambda u}+\beta=0$ or (2) $-\Gd_pu+\lambda |u|^{q-1}u+\beta=0$ in a ...
Quoc, Hung Nguyen, Veron, Laurent
core +3 more sources
Self-Similar Blowup Solutions to the 2-Component Degasperis-Procesi Shallow Water System
In this article, we study the self-similar solutions of the 2-component Degasperis-Procesi water system:% [c]{c}% \rho_{t}+k_{2}u\rho_{x}+(k_{1}+k_{2})\rho u_{x}=0 u_{t}-u_{xxt}+4uu_{x}-3u_{x}u_{xx}-uu_{xxx}+k_{3}\rho\rho_{x}=0. By the separation method,
Camassa+19 more
core +1 more source
Existence of solutions for the Keller-Segel model of chemotaxis with measures as initial data
A simple proof of the existence of solutions for the two-dimensional Keller-Segel model with measures with all the atoms less than $8\pi$ as the initial data is given.
Biler, Piotr, Zienkiewicz, Jacek
core +1 more source
A Fujita-type blowup result and low energy scattering for a nonlinear Schr\"o\-din\-ger equation
In this paper we consider the nonlinear Schr\"o\-din\-ger equation $i u_t +\Delta u +\kappa |u|^\alpha u=0$. We prove that if $\alpha
Cazenave, Thierry+3 more
core +2 more sources
Wave breaking of periodic solutions to the Fornberg-Whitham equation
Based on recent well-posedness results in Sobolev (or Besov spaces) for periodic solutions to the Fornberg-Whitham equations we investigate here the questions of wave breaking and blow-up for these solutions.
Hoermann, Guenther
core +1 more source
Finite-time blowup for a complex Ginzburg-Landau equation with linear driving
In this paper, we consider the complex Ginzburg--Landau equation $u_t = e^{i\theta} [\Delta u + |u|^\alpha u] + \gamma u$ on ${\mathbb R}^N $, where $\alpha >0$, $\gamma \in \R$ and $-\pi ...
Cazenave, Thierry+2 more
core +2 more sources
Examples of non-isolated blow-up for perturbations of the scalar curvature equation on non locally conformally flat manifolds [PDF]
Solutions to scalar curvature equations have the property that all possible blow-up points are isolated, at least in low dimensions. This property is commonly used as the first step in the proofs of compactness. We show that this result becomes false for
Robert, Frédéric, Vétois, Jérôme
core +2 more sources
Sub-logistic source can prevent blow-up in the 2D minimal Keller-Segel chemotaxis system
It is well-known that the Neumann initial-boundary value problem for the minimal-chemotaxis-logistic system in a 2D bounded smooth domain has no blow-up for any choice of parameters. Here, for a large class of kinetic terms including sub-logistic sources,
Xiang, Tian
core +1 more source
Critical criteria of Fujita type for a system of inhomogeneous wave inequalities in exterior domains
We consider blow-up results for a system of inhomogeneous wave inequalities in exterior domains. We will handle three type boundary conditions: Dirichlet type, Neumann type and mixed boundary conditions.
Jleli, Mohamed, Samet, Bessem, Ye, Dong
core +1 more source
Boundedness and exponential convergence of a chemotaxis model for tumor invasion
We revisit the following chemotaxis system modeling tumor invasion \begin{equation*} \begin{cases} u_t=\Delta u-\nabla \cdot(u\nabla v),& x\in\Omega, t>0,\\ v_t=\Delta v+wz,& x\in\Omega, t>0,\\ w_t=-wz,& x\in\Omega, t>0,\\ z_t=\Delta z-z+u, & x\in\Omega,
Jin, Haiyang, Xiang, Tian
core +1 more source