Results 11 to 20 of about 720 (65)
In this paper, the blow-up analyses in nonlocal reaction diffusion equations with time-dependent coefficients are investigated under Neumann boundary conditions.
Tian Huimin, Zhang Lingling
doaj +1 more source
We consider the nonlinear elliptic–parabolic boundary value problem involving the Dirichlet-to-Neumann operator of p-Laplace type at the critical Sobolev exponent.
Deng Yanhua, Tan Zhong, Xie Minghong
doaj +1 more source
In this paper, we study the fractional p-Laplacian evolution equation with arbitrary initial energy,
Liao Menglan, Liu Qiang, Ye Hailong
doaj +1 more source
Blow-up solutions with minimal mass for nonlinear Schrödinger equation with variable potential
This paper studies the mass-critical variable coefficient nonlinear Schrödinger equation. We first get the existence of the ground state by solving a minimization problem.
Pan Jingjing, Zhang Jian
doaj +1 more source
We consider a degenerate chemotaxis model with two-species and two-stimuli in dimension d ≥ 3 and find two critical curves intersecting at one point which separate the global existence and blow up of weak solutions to the problem.
Carrillo Antonio José, Lin Ke
doaj +1 more source
Equivalence of optimal $L^1$-inequalities on Riemannian Manifolds [PDF]
Let $(M,g)$ be a smooth compact Riemannian manifold of dimension $n \geq 2$. This paper concerns to the validity of the optimal Riemannian $L^1$-Entropy inequality \[ {\bf Ent}_{dv_g}(u) \leq n \log \left(A_{opt} \|D u\|_{BV(M)} + B_{opt}\right) \] for ...
Ceccon, Jurandir, Cioletti, Leandro
core +2 more sources
Self-Similar Blowup Solutions to the 2-Component Degasperis-Procesi Shallow Water System
In this article, we study the self-similar solutions of the 2-component Degasperis-Procesi water system:% [c]{c}% \rho_{t}+k_{2}u\rho_{x}+(k_{1}+k_{2})\rho u_{x}=0 u_{t}-u_{xxt}+4uu_{x}-3u_{x}u_{xx}-uu_{xxx}+k_{3}\rho\rho_{x}=0. By the separation method,
Camassa +19 more
core +1 more source
Existence of solutions for the Keller-Segel model of chemotaxis with measures as initial data
A simple proof of the existence of solutions for the two-dimensional Keller-Segel model with measures with all the atoms less than $8\pi$ as the initial data is given.
Biler, Piotr, Zienkiewicz, Jacek
core +1 more source
Wave breaking of periodic solutions to the Fornberg-Whitham equation
Based on recent well-posedness results in Sobolev (or Besov spaces) for periodic solutions to the Fornberg-Whitham equations we investigate here the questions of wave breaking and blow-up for these solutions.
Hoermann, Guenther
core +1 more source
A Fujita-type blowup result and low energy scattering for a nonlinear Schr\"o\-din\-ger equation
In this paper we consider the nonlinear Schr\"o\-din\-ger equation $i u_t +\Delta u +\kappa |u|^\alpha u=0$. We prove that if $\alpha
Cazenave, Thierry +3 more
core +2 more sources

