Results 31 to 40 of about 720 (65)
Boundedness and exponential convergence of a chemotaxis model for tumor invasion
We revisit the following chemotaxis system modeling tumor invasion \begin{equation*} \begin{cases} u_t=\Delta u-\nabla \cdot(u\nabla v),& x\in\Omega, t>0,\\ v_t=\Delta v+wz,& x\in\Omega, t>0,\\ w_t=-wz,& x\in\Omega, t>0,\\ z_t=\Delta z-z+u, & x\in\Omega,
Jin, Haiyang, Xiang, Tian
core +1 more source
Hardy inequalities and non-explosion results for semigroups
We prove non-explosion results for Schr\"odinger perturbations of symmetric transition densities and Hardy inequalities for their quadratic forms by using explicit supermedian functions of their semigroups.Comment: 21 pages, updated ...
Bogdan, Krzysztof +2 more
core +1 more source
Long time decay of incompressible convective Brinkman-Forchheimer in L2(ℝ3)
In this article, we study the global existence, uniqueness, and continuity for the solution of incompressible convective Brinkman-Forchheimer on the whole space R3{{\mathbb{R}}}^{3} when 4μβ≥14\mu \beta \ge 1.
Jlali Lotfi, Benameur Jamel
doaj +1 more source
A-priori bounds for quasilinear problems in critical dimension
We establish uniform a-priori bounds for solutions of the quasilinear ...
Romani Giulio
doaj +1 more source
Fast and Slow Decaying Solutions of Lane–Emden Equations Involving Nonhomogeneous Potential
Our purpose in this paper is to study positive solutions of the Lane–Emden ...
Chen Huyuan, Huang Xia, Zhou Feng
doaj +1 more source
Nodal Blow-Up Solutions to Slightly Subcritical Elliptic Problems with Hardy-Critical Term
The paper is concerned with the slightly subcritical elliptic problem with Hardy-critical ...
Bartsch Thomas, Guo Qianqiao
doaj +1 more source
This article is concerned with the singularity formation of smooth solutions for a nonhomogeneous hyperbolic system arising in magnetohydrodynamics. The system owns four linearly degenerate characteristic fields that influence each other in the relations
Hu Yanbo, Zeng Ying
doaj +1 more source
Blow-up of solutions for Euler-Bernoulli equation with nonlinear time delay
We study the Euler-Bernoulli equations with time delay: utt+Δ2u−g1∗Δ2u+g2∗Δu+μ1ut(x,t)∣ut(x,t)∣m−2+μ2ut(x,t−τ)∣ut(x,t−τ)∣m−2=f(u),{u}_{tt}+{\Delta }^{2}u-{g}_{1}\ast {\Delta }^{2}u+{g}_{2}\ast \Delta u+{\mu }_{1}{u}_{t}\left(x,t){| {u}_{t}\left(x,t ...
Lin Rongrui, Gao Yunlong, She Lianbing
doaj +1 more source
We prove the existence of extremals for fractional Moser–Trudinger inequalities in an interval and on the whole real line. In both cases we use blow-up analysis for the corresponding Euler–Lagrange equation, which requires new sharp estimates obtained ...
Mancini Gabriele, Martinazzi Luca
doaj +1 more source
The initial-value problem for a Gardner-type equation
Discussed here is a regularized version(0.1)ut+ux+uux+Au2ux−uxxt=0, $${u}_{t}+{u}_{x}+u{u}_{x}+A{u}^{2}{u}_{x}-{u}_{\mathit{xxt}}=0,$$ of the classical Gardner equationut+ux+uux+Au2ux+uxxx=0, $${u}_{t}+{u}_{x}+u{u}_{x}+A{u}^{2}{u}_{x}+{u}_{\mathit{xxx ...
Bona Jerry +4 more
doaj +1 more source

