Critical regularity of nonlinearities in semilinear classical damped wave equations
In this paper we consider the Cauchy problem for the semilinear damped wave equation $u_{tt}-\Delta u + u_t = h(u);\qquad u(0;x) = f(x); \quad u_t(0;x) = g(x);$ where $h(s) = |s|^{1+2/n}\mu(|s|)$.
Ebert, Marcelo Rempel+2 more
core +1 more source
Uniqueness of limit flow for a class of quasi-linear parabolic equations
We investigate the issue of uniqueness of the limit flow for a relevant class of quasi-linear parabolic equations defined on the whole space. More precisely, we shall investigate conditions which guarantee that the global solutions decay at infinity ...
Squassina Marco, Watanabe Tatsuya
doaj +1 more source
Long time decay of incompressible convective Brinkman-Forchheimer in L2(ℝ3)
In this article, we study the global existence, uniqueness, and continuity for the solution of incompressible convective Brinkman-Forchheimer on the whole space R3{{\mathbb{R}}}^{3} when 4μβ≥14\mu \beta \ge 1.
Jlali Lotfi, Benameur Jamel
doaj +1 more source
Blow-Up Results for Higher-Order Evolution Differential Inequalities in Exterior Domains
We consider a higher-order evolution differential inequality in an exterior domain of ℝN{\mathbb{R}^{N}}, N≥3{N\geq 3}, with Dirichlet and Neumann boundary conditions.
Jleli Mohamed+2 more
doaj +1 more source
A Blow-Up Criterion for the 3D Euler Equations Via the Euler-Voigt Inviscid Regularization
We propose a new blow-up criterion for the 3D Euler equations of incompressible fluid flows, based on the 3D Euler-Voigt inviscid regularization. This criterion is similar in character to a criterion proposed in a previous work by the authors, but it is ...
Larios, Adam, Titi, Edriss S.
core
Concentration with a single sign-changing layer at the higher critical exponents
We exhibit a new concentration phenomenon for the supercritical ...
Clapp Mónica, Faya Jorge
doaj +1 more source
On blow-up for the supercritical defocusing nonlinear wave equation
In this paper, we consider the defocusing nonlinear wave equation $-\partial _t^2u+\Delta u=|u|^{p-1}u$ in $\mathbb {R}\times \mathbb {R}^d$ .
Feng Shao, Dongyi Wei, Zhifei Zhang
doaj +1 more source
Global existence and blow-up of solutions to pseudo-parabolic equation for Baouendi-Grushin operator
In this note, we study a global existence and blow-up of the positive solutions to the initial-boundary value problem of the nonlinear pseudo-parabolic equation for the Baouendi-Grushin operator.
Dukenbayeva Aishabibi
doaj +1 more source
Blow-up of waves on singular spacetimes with generic spatial metrics. [PDF]
Fajman D, Urban L.
europepmc +1 more source
Blow-up of solutions for Euler-Bernoulli equation with nonlinear time delay
We study the Euler-Bernoulli equations with time delay: utt+Δ2u−g1∗Δ2u+g2∗Δu+μ1ut(x,t)∣ut(x,t)∣m−2+μ2ut(x,t−τ)∣ut(x,t−τ)∣m−2=f(u),{u}_{tt}+{\Delta }^{2}u-{g}_{1}\ast {\Delta }^{2}u+{g}_{2}\ast \Delta u+{\mu }_{1}{u}_{t}\left(x,t){| {u}_{t}\left(x,t ...
Lin Rongrui, Gao Yunlong, She Lianbing
doaj +1 more source