Results 31 to 40 of about 474 (66)
This study first establishes several maximum and minimum principles involving the nonlocal Monge-Ampère operator and the multi-term time-space fractional Caputo-Fabrizio derivative.
Guan Tingting, Wang Guotao, Araci Serkan
doaj +1 more source
Monotonicity and symmetry of singular solutions to quasilinear problems
We consider singular solutions to quasilinear elliptic equations under zero Dirichlet boundary condition. Under suitable assumptions on the nonlinearity we deduce symmetry and monotonicity properties of positive solutions via an improved moving plane ...
Esposito, Francesco +2 more
core +2 more sources
In this paper, we consider the general dual fractional parabolic problem ∂tαu(x,t)+Lu(x,t)=f(t,u(x,t))inRn×R. ${\partial }_{t}^{\alpha }u\left(x,t\right)+\mathcal{L}u\left(x,t\right)=f\left(t,u\left(x,t\right)\right) \text{in} {\mathbb{R}}^{n}{\times ...
Guo Yahong, Ma Lingwei, Zhang Zhenqiu
doaj +1 more source
A Liouville type theorem for a class of anisotropic equations
In this paper we are dealing with entire solutions of a general class of anisotropic equations. Under some appropriate conditions on the data, we show that the corresponding equations cannot have non-trivial positive solutions bounded from above.
Barbu Luminiţa, Enache Cristian
doaj +1 more source
Global Dynamics of Generalized Logistic Equations
We consider a parameter dependent parabolic logistic population model with diffusion and degenerate logistic term allowing for refuges for the population.
Daners Daniel, López-Gómez Julián
doaj +1 more source
Beyond the classical strong maximum principle: Sign-changing forcing term and flat solutions
We show that the classical strong maximum principle, concerning positive supersolutions of linear elliptic equations vanishing on the boundary of the domain can be extended, under suitable conditions, to the case in which the forcing term is sign ...
Díaz Jesús Ildefonso +1 more
doaj +1 more source
Existence results for fully nonlinear equations in radial domains
We consider the fully nonlinear problem \begin{equation*} \begin{cases} -F(x,D^2u)=|u|^{p-1}u & \text{in $\Omega$}\\ u=0 & \text{on $\partial\Omega$} \end{cases} \end{equation*} where $F$ is uniformly elliptic, $p>1$ and $\Omega$ is either an annulus or ...
Galise, Giulio +2 more
core +1 more source
Well-posedness and maximum principles for lattice reaction-diffusion equations
Existence, uniqueness and continuous dependence results together with maximum principles represent key tools in the analysis of lattice reaction-diffusion equations.
Slavík Antonín +2 more
doaj +1 more source
On the well-posedness of a multiscale mathematical model for Lithium-ion batteries
We consider the mathematical treatment of a system of nonlinear partial differential equations based on a model, proposed in 1972 by J. Newman, in which the coupling between the Lithium concentration, the phase potentials and temperature in the ...
Díaz J. Ildefonso +2 more
doaj +1 more source
A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart
We establish the nonexistence of nontrivial ancient solutions to the nonlinear heat equation $u_t=\Delta u+|u|^{p-1}u$ which are smaller in absolute value than the self-similar radial singular steady state, provided that the exponent $p$ is strictly ...
Sourdis, Christos
core

