Results 31 to 40 of about 229 (44)

Qualitative properties of solutions for dual fractional parabolic equations involving nonlocal Monge-Ampère operator

open access: yesAdvances in Nonlinear Analysis
In this article, we mainly study the qualitative properties of solutions for dual fractional-order parabolic equations with nonlocal Monge-Ampère operators in different domains ∂tβμ(y,t)−Dατμ(y,t)=f(μ(y,t)).{\partial }_{t}^{\beta }\mu \left(y,t)-{D}_ ...
Yang Zerong, He Yong
doaj   +1 more source

Sharp Liouville results for fully nonlinear equations with power-growth nonlinearities [PDF]

open access: yes, 2010
We study fully nonlinear elliptic equations such as \[ F(D^2u) = u^p, \quad p>1, \] in $\R^n$ or in exterior domains, where $F$ is any uniformly elliptic, positively homogeneous operator.
Armstrong, Scott N., Sirakov, Boyan
core   +4 more sources

A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart

open access: yes, 2020
We establish the nonexistence of nontrivial ancient solutions to the nonlinear heat equation $u_t=\Delta u+|u|^{p-1}u$ which are smaller in absolute value than the self-similar radial singular steady state, provided that the exponent $p$ is strictly ...
Sourdis, Christos
core  

Weighted ${L^p}$-Liouville Theorems for Hypoelliptic Partial Differential Operators on Lie Groups

open access: yes, 2015
We prove weighted $L^p$-Liouville theorems for a class of second order hypoelliptic partial differential operators $\mathcal{L}$ on Lie groups $\mathbb{G}$ whose underlying manifold is $n$-dimensional space.
Bonfiglioli, Andrea, Kogoj, Alessia E.
core   +1 more source

Liouville's type results for singular anisotropic operators

open access: yesAnalysis and Geometry in Metric Spaces
We present two Liouville-type results for solutions to anisotropic elliptic equations that have a growth of power 2 along the first ss coordinate directions and of power pp, with ...
Maria Cassanello Filippo   +2 more
doaj   +1 more source

Multidimensional entire solutions for an elliptic system modelling phase separation

open access: yes, 2016
For the system of semilinear elliptic equations \[ \Delta V_i = V_i \sum_{j \neq i} V_j^2, \qquad V_i > 0 \qquad \text{in $\mathbb{R}^N$} \] we devise a new method to construct entire solutions.
Soave, Nicola, Zilio, Alessandro
core   +1 more source

Una caracterización de los atributos de la función lineal en el nivel medio superior [PDF]

open access: yes, 2015
El estudio pretende caracterizar los atributos asociados a la función lineal en estudiantes del nivel medio superior técnico. Para ello se han contemplado dos componentes: lo cognitivo y lo curricular.
Flores, Rebeca
core  

Non-existence, radial symmetry, monotonicity, and Liouville theorem of master equations with fractional p-Laplacian

open access: yesAdvances in Nonlinear Analysis
In this article, first, we introduce a new operator (∂t−Δp)su(z,t)=Cn,sp∫−∞t∫Rn∣u(z,t)−u(ζ,ϱ)∣p−2(u(z,t)−u(ζ,ϱ))(t−ϱ)n2+1+sp2e−∣z−ζ∣24(t−ϱ)dζdϱ,{\left({\partial }_{t}-{\Delta }_{p})}^{s}u\left(z,t)={C}_{n,sp}\underset{-\infty }{\overset{t}{\int }}\mathop{
Liu Mengru, Zhang Lihong
doaj   +1 more source

Liouville type theorems involving fractional order systems

open access: yesAdvanced Nonlinear Studies
In this paper, let α be any real number between 0 and 2, we study the following semi-linear elliptic system involving the fractional Laplacian: (−Δ)α/2u(x)=f(u(x),v(x)),x∈Rn,(−Δ)α/2v(x)=g(u(x),v(x)),x∈Rn. $\begin{cases}{\left(-{\Delta}\right)}^{\alpha /2}
Liao Qiuping, Liu Zhao, Wang Xinyue
doaj   +1 more source

Nonexistence results of positive solutions of Heisenberg Hessian equations and inequalities on the Heisenberg group

open access: yesAnalysis and Geometry in Metric Spaces
In this article, we study Liouville type theorems of fully nonlinear elliptic partial differential equations on the Heisenberg group and obtain some nonexistence results of positive solutions of Heisenberg Hessian equations (and inequalities), including ...
Chen Chuanqiang, Ma Yan
doaj   +1 more source

Home - About - Disclaimer - Privacy