Results 71 to 80 of about 226 (100)

Regularity and reduction to a Hamilton-Jacobi equation for a MHD Eyring-Powell fluid

open access: yesAlexandria Engineering Journal, 2022
The flow under an Eyring-Powell description has attracted interest to model different scenarios related with non-Newtonian fluids. The goal of the present study is to provide analysis of solutions to a one-dimensional Eyring-Powell fluid in ...
José Luis Díaz Palencia   +2 more
doaj  

Conformal Geometry and the Composite Membrane Problem

open access: yesAnalysis and Geometry in Metric Spaces, 2013
Chanillo Sagun
doaj   +1 more source

Nonoccurrence of Lavrentiev gap for a class of functionals with nonstandard growth

open access: yesAdvances in Nonlinear Analysis
We consider the functional ℱ(u)≔∫Ωf(x,Du(x))dx,{\mathcal{ {\mathcal F} }}\left(u):= \mathop{\int }\limits_{\Omega }f\left(x,Du\left(x)){\rm{d}}x, where f(x,z)f\left(x,z) satisfies a (p,q)\left(p,q)-growth condition with respect to zz and can be ...
De Filippis Filomena   +2 more
doaj   +1 more source

Nontrivial solutions for resonance quasilinear elliptic systems

open access: yesAdvances in Nonlinear Analysis
We establish an Amann-Zehnder-type result for resonance systems of quasilinear elliptic equations with homogeneous Dirichlet boundary conditions, involving nonlinearities growing asymptotically (p,q)\left(p,q)-linear at infinity.
Borgia Natalino   +2 more
doaj   +1 more source

Regularity of weak solutions to the 3D stationary tropical climate model

open access: yesOpen Mathematics
This article studies the regularity of weak solutions to the 3D stationary tropical climate model. We prove that when (U,V,θ)\left(U,V,\theta ) belongs to the homogeneous Morrey space M˙2,p(R3){\dot{M}}^{2,p}\left({{\mathbb{R}}}^{3}) with p>3p\gt 3, then
Song Huiyang, Bie Qunyi, Zhou Yanping
doaj   +1 more source

The initial-value problem for a Gardner-type equation

open access: yesAdvanced Nonlinear Studies
Discussed here is a regularized version(0.1)ut+ux+uux+Au2ux−uxxt=0, $${u}_{t}+{u}_{x}+u{u}_{x}+A{u}^{2}{u}_{x}-{u}_{\mathit{xxt}}=0,$$ of the classical Gardner equationut+ux+uux+Au2ux+uxxx=0, $${u}_{t}+{u}_{x}+u{u}_{x}+A{u}^{2}{u}_{x}+{u}_{\mathit{xxx ...
Bona Jerry   +4 more
doaj   +1 more source

Home - About - Disclaimer - Privacy