Results 21 to 24 of about 28 (24)
Well-posedness of the time-periodic Jordan-Moore-Gibson-Thompson equation [PDF]
Motivated by applications of nonlinear ultrasonics under continuous wave excitation, we study the Jordan-Moore-Gibson-Thompson (JMGT) equation -- a third order in time quasilinear PDE -- under time periodicity conditions. Here the coefficient of the third order time derivative is the so-called relaxation time and a thorough understanding of the ...
arxiv
Nonexistence of traveling wave solutions in the fractional Rosenau-Hyman equation via homotopy perturbation method [PDF]
We apply the homotopy perturbation method to construct series solutions for the fractional Rosenau-Hyman (fRH) equation and study their dynamics. Unlike the classical RH equation where compactons arise from truncated periodic solutions, we show that spatial nonlocality prevents the existence of compactons, and therefore periodic traveling waves are ...
arxiv
An ansatz for solving nonlinear partial differential equations in mathematical physics. [PDF]
Akbar MA, Ali NH.
europepmc +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
The Ξ -expansion method for several types of nonlinear PDEs and traveling wave solutions
Journal of Interdisciplinary Mathematics, 2021In this article, we applied the improved and generalized method G G æ ö ç ÷ è ø ¢ to some nonlinear problems such as: the (2+1) dimensional Bogoyavliskii equation and the AblowitzKuap-Newell-Segur equation (AKNSE), but distinctively and simple, we called
Amjad Hussain+2 more
semanticscholar +1 more source