Results 41 to 50 of about 756 (73)

Two solutions for Dirichlet double phase problems with variable exponents

open access: yesAdvanced Nonlinear Studies
This paper is devoted to the study of a double phase problem with variable exponents and Dirichlet boundary condition. Based on an abstract critical point theorem, we establish existence results under very general assumptions on the nonlinear term, such ...
Amoroso Eleonora   +3 more
doaj   +1 more source

Regularizing Effect of Two Hypotheses on the Interplay Between Coefficients in Some Hamilton–Jacobi Equations

open access: yesAdvanced Nonlinear Studies, 2021
We study of the regularizing effect of the interaction between the coefficient of the zero-order term and the lower-order term in quasilinear Dirichlet problems whose model ...
Arcoya David, Boccardo Lucio
doaj   +1 more source

Well posedness of magnetohydrodynamic equations in 3D mixed-norm Lebesgue space

open access: yesOpen Mathematics, 2022
In this paper, we introduce a new metric space called the mixed-norm Lebesgue space, which allows its norm decay to zero with different rates as ∣x∣→∞| x| \to \infty in different spatial directions.
Liu Yongfang, Zhu Chaosheng
doaj   +1 more source

Existence and uniqueness of solution for a singular elliptic differential equation

open access: yesAdvances in Nonlinear Analysis
In this article, we are concerned about the existence, uniqueness, and nonexistence of the positive solution for: −Δu−12(x⋅∇u)=μh(x)uq−1+λu−up,x∈RN,u(x)→0,as∣x∣→+∞,\left\{\begin{array}{l}-\Delta u-\frac{1}{2}\left(x\cdot \nabla u)=\mu h\left(x){u}^{q-1}+\
Gu Shanshan, Yang Bianxia, Shao Wenrui
doaj   +1 more source

Hydrodynamic limit of the kinetic Cucker-Smale flocking model [PDF]

open access: yes, 2012
The hydrodynamic limit of a kinetic Cucker-Smale model is investigated. In addition to the free-transport of individuals and the Cucker-Smale alignment operator, the model under consideration includes a strong local alignment term. This term was recently
Karper, Trygve   +2 more
core  

Maximum principles for Laplacian and fractional Laplacian with critical integrability

open access: yes, 2019
In this paper, we study maximum principles for Laplacian and fractional Laplacian with critical integrability. We first consider $-\Delta u(x)+c(x)u(x)\geq 0$ in $B_1$ where $c(x)\in L^{p}(B_1)$, $B_1\subset \mathbf{R}^n$. As is known that $p=\frac{n}{2}$
Lü, Yingshu
core  

A fractional profile decomposition and its application to Kirchhoff-type fractional problems with prescribed mass

open access: yesAdvances in Nonlinear Analysis
In this article, we study the following fractional Kirchhoff-type problems with critical and sublinear nonlinearities: a+b∬RN×RN∣u(x)−u(y)∣2∣x−y∣N+2sdxdy(−Δ)su=λuq−1+u2s*−1,u>0,inΩ,u=0,inRN\Ω,∫RNu2dx=c2,\left\{\begin{array}{l}\left(a+b\mathop{\iint ...
Tian Junshan, Zhang Binlin
doaj   +1 more source

On Weak Solutions to Parabolic Problem Involving the Fractional p-Laplacian via Young Measures

open access: yesAnnales Mathematicae Silesianae
In this paper, we study the local existence of weak solutions for parabolic problem involving the fractional p-Laplacian. Our technique is based on the Galerkin method combined with the theory of Young measures.
Talibi Ihya   +3 more
doaj   +1 more source

Home - About - Disclaimer - Privacy