Results 41 to 50 of about 756 (73)
Two solutions for Dirichlet double phase problems with variable exponents
This paper is devoted to the study of a double phase problem with variable exponents and Dirichlet boundary condition. Based on an abstract critical point theorem, we establish existence results under very general assumptions on the nonlinear term, such ...
Amoroso Eleonora+3 more
doaj +1 more source
We study of the regularizing effect of the interaction between the coefficient of the zero-order term and the lower-order term in quasilinear Dirichlet problems whose model ...
Arcoya David, Boccardo Lucio
doaj +1 more source
Well posedness of magnetohydrodynamic equations in 3D mixed-norm Lebesgue space
In this paper, we introduce a new metric space called the mixed-norm Lebesgue space, which allows its norm decay to zero with different rates as ∣x∣→∞| x| \to \infty in different spatial directions.
Liu Yongfang, Zhu Chaosheng
doaj +1 more source
Existence and uniqueness of solution for a singular elliptic differential equation
In this article, we are concerned about the existence, uniqueness, and nonexistence of the positive solution for: −Δu−12(x⋅∇u)=μh(x)uq−1+λu−up,x∈RN,u(x)→0,as∣x∣→+∞,\left\{\begin{array}{l}-\Delta u-\frac{1}{2}\left(x\cdot \nabla u)=\mu h\left(x){u}^{q-1}+\
Gu Shanshan, Yang Bianxia, Shao Wenrui
doaj +1 more source
Hydrodynamic limit of the kinetic Cucker-Smale flocking model [PDF]
The hydrodynamic limit of a kinetic Cucker-Smale model is investigated. In addition to the free-transport of individuals and the Cucker-Smale alignment operator, the model under consideration includes a strong local alignment term. This term was recently
Karper, Trygve+2 more
core
Maximum principles for Laplacian and fractional Laplacian with critical integrability
In this paper, we study maximum principles for Laplacian and fractional Laplacian with critical integrability. We first consider $-\Delta u(x)+c(x)u(x)\geq 0$ in $B_1$ where $c(x)\in L^{p}(B_1)$, $B_1\subset \mathbf{R}^n$. As is known that $p=\frac{n}{2}$
Lü, Yingshu
core
Synchronized Tick Population Oscillations Driven by Host Mobility and Spatially Heterogeneous Developmental Delays Combined. [PDF]
Zhang X, Wu J.
europepmc +1 more source
In this article, we study the following fractional Kirchhoff-type problems with critical and sublinear nonlinearities: a+b∬RN×RN∣u(x)−u(y)∣2∣x−y∣N+2sdxdy(−Δ)su=λuq−1+u2s*−1,u>0,inΩ,u=0,inRN\Ω,∫RNu2dx=c2,\left\{\begin{array}{l}\left(a+b\mathop{\iint ...
Tian Junshan, Zhang Binlin
doaj +1 more source
Direct Estimation of Parameters in ODE Models Using WENDy: Weak-Form Estimation of Nonlinear Dynamics. [PDF]
Bortz DM, Messenger DA, Dukic V.
europepmc +1 more source
On Weak Solutions to Parabolic Problem Involving the Fractional p-Laplacian via Young Measures
In this paper, we study the local existence of weak solutions for parabolic problem involving the fractional p-Laplacian. Our technique is based on the Galerkin method combined with the theory of Young measures.
Talibi Ihya+3 more
doaj +1 more source