Results 21 to 30 of about 635 (58)
On a class of critical elliptic systems in ℝ4
In the present paper, we consider the following classes of elliptic systems with Sobolev critical growth:
Zhao Xin, Zou Wenming
doaj +1 more source
Approximate nonradial solutions for the Lane-Emden problem in the ball
In this paper we provide a numerical approximation of bifurcation branches from nodal radial solutions of the Lane Emden Dirichlet problem in the unit ball in ℝ2, as the exponent of the nonlinearity varies.
Fazekas Borbála +2 more
doaj +1 more source
A duality theorem for solutions of elliptic equations
Let L be a second order linear partial differential operator of elliptic type on a domain Ω of ℝm with coefficients in C∞(Ω). We consider the linear space of all solutions of the equation Lu = 0 on Ω with the topology of uniform convergence on compact subsets and describe the topological dual of this space. It turns out that this dual may be identified
Pierre Blanchet
wiley +1 more source
A posteriori error estimates for mixed finite volume solution of elliptic boundary value problems
The major emphasis of this work is the derivation of a posteriori error estimates for the mixed finite volume discretization of second-order elliptic equations. The estimates are established for meshes consisting of simplices on unstructured grids.
Benkhaldoun Fayssal +2 more
doaj +1 more source
In this paper we study double phase problems with nonlinear boundary condition and gradient dependence. Under quite general assumptions we prove existence results for such problems where the perturbations satisfy a suitable behavior in the origin and at ...
Manouni Said El +2 more
doaj +1 more source
On the initial value problem for a partial differential equation with operator coefficients
In the present work it is studied the initial value problem for an equation of the form where L is an elliptic partial differential operator and (Lj : j = 1, …, k) is a family of partial differential operators with bounded operator coefficients in a suitable function space. It is found a suitable formula for solution.
Mahmoud M. El-Borai
wiley +1 more source
On Weights Which Admit Harmonic Bergman Kernel and Minimal Solutions of Laplace’s Equation
In this paper we consider spaces of weight square-integrable and harmonic functions L2H(Ω, µ). Weights µ for which there exists reproducing kernel of L2H(Ω, µ) are named ’admissible weights’ and such kernels are named ’harmonic Bergman kernels’. We prove
Żynda Tomasz Łukasz
doaj +1 more source
Sharp Hardy Identities and Inequalities on Carnot Groups
In this paper we establish general weighted Hardy identities for several subelliptic settings including Hardy identities on the Heisenberg group, Carnot groups with respect to a homogeneous gauge and Carnot–Carathéodory metric, general nilpotent groups ...
Flynn Joshua, Lam Nguyen, Lu Guozhen
doaj +1 more source
Einstein manifolds of non-negative sectional curvature and entropy
We find obstructions to the existence of Einstein metrics of non-negative sectional curvature on a smooth closed simply connected manifold of any dimension.
Paternain, Gabriel, Petean, Jimmy
core +1 more source
Global gradient estimates for Dirichlet problems of elliptic operators with a BMO antisymmetric part
Let n≥2n\ge 2 and Ω⊂Rn\Omega \subset {{\mathbb{R}}}^{n} be a bounded nontangentially accessible domain. In this article, the authors investigate (weighted) global gradient estimates for Dirichlet boundary value problems of second-order elliptic equations
Yang Sibei, Yang Dachun, Yuan Wen
doaj +1 more source

