Results 41 to 49 of about 49 (49)
The strong maximum principle for Schrödinger operators on fractals
We prove a strong maximum principle for Schrödinger operators defined on a class of postcritically finite fractal sets and their blowups without boundary.
Ionescu Marius V.+2 more
doaj +1 more source
Beyond the classical strong maximum principle: Sign-changing forcing term and flat solutions
We show that the classical strong maximum principle, concerning positive supersolutions of linear elliptic equations vanishing on the boundary of the domain can be extended, under suitable conditions, to the case in which the forcing term is sign ...
Díaz Jesús Ildefonso+1 more
doaj +1 more source
An Agmon-Allegretto-Piepenbrink principle for Schrödinger operators. [PDF]
Buccheri S, Orsina L, Ponce AC.
europepmc +1 more source
Operator compression with deep neural networks. [PDF]
Kröpfl F, Maier R, Peterseim D.
europepmc +1 more source
On subsolutions and concavity for fully nonlinear elliptic equations
Subsolutions and concavity play critical roles in classical solvability, especially a priori estimates, of fully nonlinear elliptic equations. Our first primary goal in this paper is to explore the possibility to weaken the concavity condition.
Guan Bo
doaj +1 more source
A New H 2 Regularity Condition of the Solution to Dirichlet Problem of the Poisson Equation and Its Applications. [PDF]
Gao FC, Lai MJ.
europepmc +1 more source
Spectral shift functions and Dirichlet-to-Neumann maps. [PDF]
Behrndt J, Gesztesy F, Nakamura S.
europepmc +1 more source
Variable-coefficient parabolic theory as a high-dimensional limit of elliptic theory. [PDF]
Davey B, Smit Vega Garcia M.
europepmc +1 more source
Structural identifiability of linear-in-parameter parabolic PDEs through auxiliary elliptic operators. [PDF]
Salmaniw Y, Browning AP.
europepmc +1 more source