Results 31 to 40 of about 1,690 (115)
Spectral gap of segments of periodic waveguides
We consider a periodic strip in the plane and the associated quantum waveguide with Dirichlet boundary conditions. We analyse finite segments of the waveguide consisting of $L$ periodicity cells, equipped with periodic boundary conditions at the ``new ...
D. Borisov +6 more
core +2 more sources
We study the location of the peaks of solution for the critical growth problem −ε 2Δu+u=f(u)+u 2*−1, u > 0 in Ω, u = 0 on ∂Ω, where Ω is a bounded domain; 2* = 2N/(N − 2), N ≥ 3, is the critical Sobolev exponent and f has a behavior like up, 1 < p < 2* − 1.
Marco A. S. Souto
wiley +1 more source
A bifurcation result involving Sobolev trace embedding and the duality mapping of W1,p
We consider the perturbed nonlinear boundary condition ...
El Khalil Abdelouahed
doaj +1 more source
Generalized Picone inequalities and their applications to (p,q)-Laplace equations
We obtain a generalization of the Picone inequality which, in combination with the classical Picone inequality, appears to be useful for problems with the (p,q)(p,q)-Laplace-type operators.
Bobkov Vladimir, Tanaka Mieko
doaj +1 more source
Sign‐changing and multiple solutions for the p‐Laplacian
We obtain a positive solution, a negative solution, and a sign‐changing solution for a class of p‐Laplacian problems with jumping nonlinearities using variational and super‐subsolution methods.
Siegfried Carl, Kanishka Perera
wiley +1 more source
Nonlocal eigenvalue problems with variable exponent
We consider the nonlocal eigenvalue problem of the following ...
Azroul Elhoussine, Shimi Mohammed
doaj +1 more source
We consider a nonlinear elliptic equation driven by the (p, q)–Laplacian plus an indefinite potential. The reaction is (p − 1)–superlinear and the boundary term is parametric and concave.
Papageorgiou Nikolaos S., Zhang Youpei
doaj +1 more source
We deal with multiplicity of solutions to the following Schrödinger-Poisson-type system in this article: ΔHu−μ1ϕ1u=∣u∣2u+Fu(ξ,u,v),inΩ,−ΔHv+μ2ϕ2v=∣v∣2v+Fv(ξ,u,v),inΩ,−ΔHϕ1=u2,−ΔHϕ2=v2,inΩ,ϕ1=ϕ2=u=v=0,on∂Ω,\left\{\begin{array}{ll}{\Delta }_{H}u-{\mu }_{1}{
Li Shiqi, Song Yueqiang
doaj +1 more source
We establish the existence of positive solution for the following class of degenerate quasilinear elliptic problem (P){−Luap+V(x)|x|−ap∗|u|p−2u=f(u)in RN,u>0in RN;u∈Da1,p(RN), where −Luap=−div(|x|−ap|∇u|p−2∇u ...
W. D. Bastos, O. Miyagaki, R. S. Vieira
semanticscholar +1 more source
Domain perturbation method and local minimizers to Ginzburg‐Landau functional with magnetic effect
We prove the existence of vortex local minimizers to Ginzburg‐Landau functional with a global magnetic effect. A domain perturbating method is developed, which allows us to extend a local minimizer on a nonsimply connected superconducting material to the local minimizer with vortex on a simply connected material.
Shuichi Jimbo, Jian Zhai
wiley +1 more source

