Results 41 to 50 of about 1,917 (133)
Landesman-Lazer condition revisited: the influence of vanishing and oscillating nonlinearities [PDF]
In this paper we deal with semilinear problems at resonance. We present a sufficient condition for the existence of a weak solution in terms of the asymptotic properties of nonlinearity.
Drabek, Pavel, Langerova, Martina
core +3 more sources
In this paper, we study the norm inequalities for sublinear operators and their commutators on weighted Morrey spaces. As application, the regularity in the weighted Morrey spaces of strong solutions to nondivergence elliptic equations with VMO ...
S. Shi, Zunwei Fu, Fayou Zhao
semanticscholar +1 more source
Existence of solutions for elliptic equations having natural growth terms in Orlicz spaces
Existence result for strongly nonlinear elliptic equation with a natural growth condition on the nonlinearity is proved.
A. Elmahi, D. Meskine
wiley +1 more source
We have investigated the behaviour of solutions of elliptic quasi-linear problems in a neighbourhood of boundary singularities in bounded and unbounded domains. We found exponents of the solution’s decreasing rate near the boundary singularities.
Bodzioch Mariusz +2 more
doaj +1 more source
Flat solutions of the 1-Laplacian equation [PDF]
For every $f \in L^N(\Omega)$ defined in an open bounded subset $\Omega$ of $\mathbb{R}^N$, we prove that a solution $u \in W_0^{1, 1}(\Omega)$ of the $1$-Laplacian equation ${-}\mathrm{div}{(\frac{\nabla u}{|\nabla u|})} = f$ in $\Omega$ satisfies ...
Orsina, Luigi, Ponce, Augusto C.
core +3 more sources
Symmetry and concentration behavior of ground state in axially symmetric domains
We let Ω(r) be the axially symmetric bounded domains which satisfy some suitable conditions, then the ground‐state solutions of the semilinear elliptic equation in Ω(r) are nonaxially symmetric and concentrative on one side. Furthermore, we prove the necessary and sufficient condition for the symmetry of ground‐state solutions.
Tsung-Fang Wu
wiley +1 more source
We consider the two-dimensional differential operator Au(x1,x2)=−a11(x1,x2)ux1x1(x1,x2)−a22(x1,x2)ux2x2(x1,x2)+σu(x1,x2) defined on functions on the half-plane Ω=R+×R with the boundary conditions u(0,x2)=0, x2∈R, where aii(x1,x2), i=1,2, are continuously
A. Ashyralyev, S. Akturk, Y. Sozen
semanticscholar +1 more source
Coefficients of singularities of the biharmonic problem of Neumann type: case of the crack
This paper concerns the biharmonic problem of Neumann type in a sector V. We give a representation of the solution u of the problem in a form of a series u = ∑α∈ECα rα ϕα, and the functions ϕα are solutions of an auxiliary problem obtained by the separation of variables.
Wided Chikouche, Aissa Aibèche
wiley +1 more source
Spatial boundary problem with the Dirichlet-Neumann condition for a singular elliptic equation
The present work devoted to the finding explicit solution of a boundary problem with the Dirichlet-Neumann condition for elliptic equation with singular coefficients in a quarter of ball. For this aim the method of Green's function have been used. Since,
Agostinelli +26 more
core +1 more source
Moderately close Neumann inclusions for the Poisson equation [PDF]
open2siWe investigate the behavior of the solution of a mixed problem for the Poisson equation in a domain with two moderately close holes. If ϱ1 and ϱ2 are two positive parameters, we define a perforated domain Ω(ϱ1,ϱ2) by making two small perforations ...
core +1 more source

