Results 41 to 50 of about 1,664 (104)
Symmetry breaking for a problem in optimal insulation [PDF]
We consider the problem of optimally insulating a given domain $\Omega$ of ${\mathbb{R}}^d$; this amounts to solve a nonlinear variational problem, where the optimal thickness of the insulator is obtained as the boundary trace of the solution.
Bucur, Dorin +2 more
core +2 more sources
Existence of entire explosive positive radial solutions of quasilinear elliptic systems
Our main purpose is to establish that entire explosive positive radial solutions exist for quasilinear elliptic systems. The main results of the present paper are new and extend previous results.
Yang Zuodong
wiley +1 more source
On Principle Eigenvalue for Linear Second Order Elliptic Equations in Divergence Form [PDF]
2002 Mathematics Subject Classification: 35J15, 35J25, 35B05, 35B50The principle eigenvalue and the maximum principle for second-order elliptic equations is studied.
Fabricant, A., Kutev, N., Rangelov, T.
core
We investigate the continuity of principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem −Δu(x) = λg(x)u(x), x ∈ BR(0); u(x) = 0, |x| = R, where BR(0) is a ball in ℝN, and g is a smooth function, and we show that λ1+(R) and λ1−(R) are continuous functions of R.
Ghasem Alizadeh Afrouzi
wiley +1 more source
On some classes of generalized Schrödinger equations
Some classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + ∑i=2m$\begin{array}{} \sum_{i=2}^{m} \end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved
Correa Leão Amanda S. S. +3 more
doaj +1 more source
Moderately close Neumann inclusions for the Poisson equation [PDF]
open2siWe investigate the behavior of the solution of a mixed problem for the Poisson equation in a domain with two moderately close holes. If ϱ1 and ϱ2 are two positive parameters, we define a perforated domain Ω(ϱ1,ϱ2) by making two small perforations ...
core +1 more source
Elliptic problems with nonmonotone discontinuities at resonance (Erratum)
Abstract and Applied Analysis, Volume 2004, Issue 3, Page 269-270, 2004.
Halidias Nikolaos
wiley +1 more source
We study the principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem: −Δu(x) = λg(x)u(x), x ∈ D; (∂u/∂n)(x) + αu(x) = 0, x ∈ ∂D, where Δ is the standard Laplace operator, D is a bounded domain with smooth boundary, g : D → ℝ is a smooth function which changes sign on D and α ∈ ℝ.
G. A. Afrouzi
wiley +1 more source
Some nonlinear second order equation modelling rocket motion [PDF]
In this paper, we consider a nonlinear second order equation modelling rocket motion in the gravitational field obstructed by the drag force.
Bors, Dorota, Stańczy, Robert
core
Overdetermined boundary value problems for the $\infty$-Laplacian
We consider overdetermined boundary value problems for the $\infty$-Laplacian in a domain $\Omega$ of $\R^n$ and discuss what kind of implications on the geometry of $\Omega$ the existence of a solution may have.
Buttazzo, G., Kawohl, B.
core +2 more sources

