Results 41 to 50 of about 1,677 (103)
We investigate the continuity of principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem −Δu(x) = λg(x)u(x), x ∈ BR(0); u(x) = 0, |x| = R, where BR(0) is a ball in ℝN, and g is a smooth function, and we show that λ1+(R) and λ1−(R) are continuous functions of R.
Ghasem Alizadeh Afrouzi
wiley +1 more source
On some classes of generalized Schrödinger equations
Some classes of generalized Schrödinger stationary problems are studied. Under appropriated conditions is proved the existence of at least 1 + ∑i=2m$\begin{array}{} \sum_{i=2}^{m} \end{array}$ dim Vλi pairs of nontrivial solutions if a parameter involved
Correa Leão Amanda S. S. +3 more
doaj +1 more source
We study positive solutions to the steady state reaction diffusion equation of the form:
Acharya A. +3 more
doaj +1 more source
On Principle Eigenvalue for Linear Second Order Elliptic Equations in Divergence Form [PDF]
2002 Mathematics Subject Classification: 35J15, 35J25, 35B05, 35B50The principle eigenvalue and the maximum principle for second-order elliptic equations is studied.
Fabricant, A., Kutev, N., Rangelov, T.
core
Elliptic problems with nonmonotone discontinuities at resonance (Erratum)
Abstract and Applied Analysis, Volume 2004, Issue 3, Page 269-270, 2004.
Halidias Nikolaos
wiley +1 more source
We study the principal eigenvalues (i.e., eigenvalues corresponding to positive eigenfunctions) for the boundary value problem: −Δu(x) = λg(x)u(x), x ∈ D; (∂u/∂n)(x) + αu(x) = 0, x ∈ ∂D, where Δ is the standard Laplace operator, D is a bounded domain with smooth boundary, g : D → ℝ is a smooth function which changes sign on D and α ∈ ℝ.
G. A. Afrouzi
wiley +1 more source
Some nonlinear second order equation modelling rocket motion [PDF]
In this paper, we consider a nonlinear second order equation modelling rocket motion in the gravitational field obstructed by the drag force.
Bors, Dorota, Stańczy, Robert
core
On the existence of bounded solutions of nonlinear elliptic systems
We study the existence of bounded solutions to the elliptic system −Δpu = f(u, v) + h1 in Ω, −Δqv = g(u, v) + h2 in Ω, u = v = 0 on ∂Ω, non‐necessarily potential systems. The method used is a shooting technique. We are concerned with the existence of a negative subsolution and a nonnegative supersolution in the sense of Hernandez; then we construct ...
Abdelaziz Ahammou
wiley +1 more source
Let Ω⊂Rn\Omega \subset {{\bf{R}}}^{n} be a smooth bounded domain. In this article, we prove a result of which the following is a by-product: Let q∈]0,1[q\in ]0,1{[}, α∈L∞(Ω)\alpha \in {L}^{\infty }\left(\Omega ), with α>0\alpha \gt 0, and k∈Nk\in {\bf{N}}
Ricceri Biagio
doaj +1 more source
This paper is concerned with the boundary behavior of the unique convex solution to a singular Dirichlet problem for the Monge–Ampère ...
Zhang Zhijun
doaj +1 more source

