Results 51 to 60 of about 3,208 (150)
This article is devoted to computing the lower and upper bounds of the Laplace eigenvalue problem. By using the special nonconforming finite elements, i.e., enriched Crouzeix-Raviart element and extension $Q_1^{\rm rot}$, we get the lower bound of the ...
C. Yao+25 more
core +1 more source
We consider the two-dimensional differential operator Au(x1,x2)=−a11(x1,x2)ux1x1(x1,x2)−a22(x1,x2)ux2x2(x1,x2)+σu(x1,x2) defined on functions on the half-plane Ω=R+×R with the boundary conditions u(0,x2)=0, x2∈R, where aii(x1,x2), i=1,2, are continuously
A. Ashyralyev, S. Akturk, Y. Sozen
semanticscholar +1 more source
Coefficients of singularities of the biharmonic problem of Neumann type: case of the crack
This paper concerns the biharmonic problem of Neumann type in a sector V. We give a representation of the solution u of the problem in a form of a series u = ∑α∈ECα rα ϕα, and the functions ϕα are solutions of an auxiliary problem obtained by the separation of variables.
Wided Chikouche, Aissa Aibèche
wiley +1 more source
We prove in weighted Orlicz-Sobolev spaces, the existence of entropy solution for a class of nonlinear elliptic equations of Leray-Lions type, with large monotonicity condition and right hand side f ∈ L1(Ω).
Haji Badr El+2 more
doaj +1 more source
In this article, we study the existence of multiple solutions to a generalized p(⋅)p\left(\cdot )-Laplace equation with two parameters involving critical growth.
Ho Ky, Sim Inbo
doaj +1 more source
In unbounded subset $\Omega$ in $R^n$ we study the operator $u\rightarrow gu$ as an operator defined in the Sobolev space $W^{r,p}(\Omega)$ and which takes values in $L^p(\Omega)$.
Canale, Anna
core +1 more source
An optimal bound for nonlinear eigenvalues and torsional rigidity on domains with holes
In this paper we prove an optimal upper bound for the first eigenvalue of a Robin-Neumann boundary value problem for the p-Laplacian operator in domains with convex holes.
Della Pietra, Francesco+1 more
core +1 more source
Unilateral boundary value problems with jump discontinuities
Using the critical point theory of Szulkin (1986), we study elliptic problems with unilateral boundary conditions and discontinuous nonlinearities. We do not use the method of upper and lower solutions. We prove two existence theorems: one when the right‐hand side is nondecreasing and the other when it is nonincreasing.
Nikolaos Halidias
wiley +1 more source
In this paper, we give a priori estimates near the boundary for solutions of a degenerate elliptic problems in the general Besov-type spaces Bp,qs,τ$B_{p,q}^{s,\tau }$, containing as special cases: Goldberg space bmo, local Morrey-Campanato spaces l2,λ ...
El Baraka Azzeddine, Masrour Mohammed
doaj +1 more source
Spectral gap of segments of periodic waveguides
We consider a periodic strip in the plane and the associated quantum waveguide with Dirichlet boundary conditions. We analyse finite segments of the waveguide consisting of $L$ periodicity cells, equipped with periodic boundary conditions at the ``new ...
D. Borisov+6 more
core +2 more sources