On the Asymptotic Behavior of D-Solutions to the Displacement Problem of Linear Elastostatics in Exterior Domains [PDF]
We study the asymptotic behavior of solutions with finite energy to the displacement problem of linear elastostatics in a three-dimensional exterior Lipschitz ...
Coscia, Vincenzo
core +1 more source
A generalization of the Hopf-Cole transformation for stationary Mean Field Games systems [PDF]
In this note we propose a transformation which decouples stationary Mean Field Games systems with superlinear Hamiltonians of the form |p|^r, and turns the Hamilton-Jacobi-Bellman equation into a quasi-linear equation involving the r-Laplace operator ...
Cirant, Marco
core +3 more sources
A Priori Bounds And Existence Of Positive Solutions For Semilinear Elliptic Systems [PDF]
We provide a-priori L∞ bounds for classical positive solutions of semilinear elliptic systems in bounded convex domains when the nonlinearities are below the power functions v^p and u^q for any (p,q) lying on the critical Sobolev hyperbola.
Mavinga, Nsoki, Pardo, R.
core +2 more sources
$L^p$ solvability of the Stationary Stokes problem on domains with conical singularity in any dimension [PDF]
The Dirichlet boundary value problem for the Stokes operator with $L^p$ data in any dimension on domains with conical singularity (not necessary a Lipschitz graph) is considered.
Dindoš, Martin, Maz'ya, Vladimir
core +2 more sources
On Lane–Emden Systems with Singular Nonlinearities and Applications to MEMS
In this paper we analyze the Lane–Emden ...
do Ó João Marcos, Clemente Rodrigo
doaj +1 more source
Pohozhaev and Morawetz Identities in Elastostatics and Elastodynamics [PDF]
We construct identities of Pohozhaev type, in the context of elastostatics and elastodynamics, by using the Noetherian approach. As an application, a non-existence result for forced semi-linear isotropic and anisotropic elastic systems is ...
Bozhkov, Yuri, Olver, Peter J.
core +3 more sources
Analysis of an elliptic system with infinitely many solutions
We consider the elliptic system Δu=upvq${\Delta u\hskip-0.284528pt=\hskip-0.284528ptu^{p}v^{q}}$, Δv=urvs${\Delta v\hskip-0.284528pt=\hskip-0.284528ptu^{r}v^{s}}$ in Ω with the boundary conditions ∂u/∂η=λu${{\partial u/\partial\eta}=\lambda u}$, ∂
Cortázar Carmen +2 more
doaj +1 more source
Coercive elliptic systems with gradient terms
In this paper we give a classification of positive radial solutions of the following system:
Filippucci Roberta, Vinti Federico
doaj +1 more source
Critical elliptic systems involving multiple strongly–coupled Hardy–type terms
In this paper, we study the radially–symmetric and strictly–decreasing solutions to a system of critical elliptic equations in RN, which involves multiple critical nonlinearities and strongly–coupled Hardy– type terms.
Kang Dongsheng, Liu Mengru, Xu Liangshun
doaj +1 more source
Separation of Coupled Systems of Schrodinger Equations by Darboux transformations
Darboux transformations in one independent variable have found numerous applications in various field of mathematics and physics. In this paper we show that the extension of these transformations to two dimensions can be used to decouple systems of ...
Magri F. +3 more
core +1 more source

