Results 21 to 30 of about 352 (47)
Stability and critical dimension for Kirchhoff systems in closed manifolds
The Kirchhoff equation was proposed in 1883 by Kirchhoff [Vorlesungen über Mechanik, Leipzig, Teubner, 1883] as an extension of the classical D’Alembert’s wave equation for the vibration of elastic strings. Almost one century later, Jacques Louis Lions [“
Hebey Emmanuel
doaj +1 more source
The core of this paper concerns the existence (via regularity) of weak solutions in W01,2${W_{0}^{1,2}}$ of a class of elliptic systems such ...
Boccardo Lucio, Orsina Luigi
doaj +1 more source
Groundstates of the Choquard equations with a sign-changing self-interaction potential
We consider a nonlinear Choquard equation $$ -\Delta u+u= (V * |u|^p )|u|^{p-2}u \qquad \text{in }\mathbb{R}^N, $$ when the self-interaction potential $V$ is unbounded from below.
Battaglia, Luca, Van Schaftingen, Jean
core +1 more source
A Note on why Enforcing Discrete Maximum Principles by a simple a Posteriori Cutoff is a Good Idea
Discrete maximum principles in the approximation of partial differential equations are crucial for the preservation of qualitative properties of physical models. In this work we enforce the discrete maximum principle by performing a simple cutoff.
Kreuzer, Christian
core +1 more source
Existence of positive radial solutions of general quasilinear elliptic systems
Let Ω⊂Rn(n≥2)\Omega \subset {{\mathbb{R}}}^{n}\hspace{0.33em}\left(n\ge 2) be either an open ball BR{B}_{R} centred at the origin or the whole space. We study the existence of positive, radial solutions of quasilinear elliptic systems of the form Δpu=f1(∣
Devine Daniel
doaj +1 more source
In this paper, we study coupled elliptic systems with gradient dependent right-hand sides and nonlinear boundary conditions, where the left-hand sides are driven by so-called double phase operators.
Frisch Michal Maria, Winkert Patrick
doaj +1 more source
A boundary regularity result for minimizers of variational integrals with nonstandard growth
We prove global Lipschitz regularity for a wide class of convex variational integrals among all functions in $W^{1,1}$ with prescribed (sufficiently regular) boundary values, which are not assumed to satisfy any geometrical constraint (as for example ...
Bulíček, Miroslav+3 more
core +1 more source
Ground State for a Coupled Elliptic System with Critical Growth
We study the following coupled elliptic system with critical nonlinearities:
Wu Huiling, Li Yongqing
doaj +1 more source
Quasilinear elliptic systems in divergence form associated to general nonlinearities
The paper is concerned with a priori estimates of positive solutions of quasilinear elliptic systems of equations or inequalities in an open set of Ω⊂ℝN{\Omega\subset\mathbb{R}^{N}} associated to general continuous nonlinearities satisfying a local ...
D’Ambrosio Lorenzo, Mitidieri Enzo
doaj +1 more source
We investigate the multiplicity of solutions for a quasilinear scalar field equation with a nonhomogeneous differential operator defined bySu≔−divϕu2+∣∇u∣22∇u+ϕu2+∣∇u∣22u,Su:= -\hspace{0.1em}\text{div}\hspace{0.1em}\left\{\phi \left(\frac{{u}^{2 ...
Qi Wanting, Zhang Xingyong
doaj +1 more source