Results 11 to 20 of about 564 (71)
Existence results for a fourth order partial differential equation arising in condensed matter physics [PDF]
We study a higher order parabolic partial differential equation that arises in the context of condensed matter physics. It is a fourth order semilinear equation whose nonlinearity is the determinant of the Hessian matrix of the solution. We consider this
Escudero, Carlos +4 more
core +2 more sources
Existence and multiplicity results for some Lane–Emden elliptic systems: Subquadratic case
We study the nonlinear elliptic system of Lane–Emden type -Δu = sgn(v) |v|p-1 in Ω, -Δv = f(x,u) in Ω, u = v = 0 on ∂Ω, where Ω is an open bounded subset of ℝN, N ≥ 2, p > 1 and f : Ω × ℝ → ℝ is a Carathéodory function satisfying suitable growth ...
Barile Sara, Salvatore Addolorata
doaj +1 more source
Multiple positive solutions for quasilinear elliptic problems with sign‐changing nonlinearities
Using variational arguments, we prove some nonexistence and multiplicity results for positive solutions of a system of p‐Laplace equations of gradient form. Then we study a p‐Laplace‐type problem with nonlinear boundary conditions.
Julián Fernández Bonder
wiley +1 more source
The aim of this paper is investigating the existence of one or more weak solutions of the coupled quasilinear elliptic system of gradient ...
Candela Anna Maria +2 more
doaj +1 more source
A note on the variational structure of an elliptic system involving critical Sobolev exponent
We consider an elliptic system involving critical growth conditions. We develop a technique of variational methods for elliptic systems. Using the well‐known results of maximum principle for systems developed by Fleckinger et al. (1995), we can find positive solutions.
Mario Zuluaga
wiley +1 more source
The shape of charged drops over a solid surface and symmetry-breaking instabilities [PDF]
We study the static shape of charged drops of a conducting fluid placed over a solid substrate, surrounded by a gas, and in absence of gravitational forces.
Fontelos, Marco Antonio +1 more
core +2 more sources
Critical elliptic systems involving multiple strongly–coupled Hardy–type terms
In this paper, we study the radially–symmetric and strictly–decreasing solutions to a system of critical elliptic equations in RN, which involves multiple critical nonlinearities and strongly–coupled Hardy– type terms.
Kang Dongsheng, Liu Mengru, Xu Liangshun
doaj +1 more source
We investigate the ground states of 3-component Bose–Einstein condensates with harmonic-like trapping potentials in ℝ2{\mathbb{R}^{2}}, where the intra-component interactions μi{\mu_{i}} and the inter-component interactions βij=βji{\beta_{ij}=\beta_{ji}
Kong Yuzhen, Wang Qingxuan, Zhao Dun
doaj +1 more source
Quasilinear elliptic systems of resonant type and nonlinear eigenvalue problems
This work is devoted to the study of a quasilinear elliptic system of resonant type. We prove the existence of infinitely many solutions of a related nonlinear eigenvalue problem. Applying an abstract minimax theorem, we obtain a solution of the quasilinear system −Δpu = Fu(x, u, v), − Δqv = F v(x, u, v), under conditions involving the first and the ...
Pablo L. de Nàpoli, M. Cristina Mariani
wiley +1 more source
This paper is devoted to investigate the existence and multiplicity of the normalized solutions for the following fractional Schrödinger equation: (P)(−Δ)su+λu=μ∣u∣p−2u+∣u∣2s∗−2u,x∈RN,u>0,∫RN∣u∣2dx=a2,\left\{\begin{array}{l}{\left(-\Delta )}^{s}u+\lambda
Li Quanqing, Zou Wenming
doaj +1 more source

