Results 21 to 30 of about 564 (71)

Homogenization in elastodynamics with force term depending on time

open access: yesInternational Journal of Mathematics and Mathematical Sciences, Volume 23, Issue 10, Page 723-728, 2000., 2000
We extend the study on the homogenization problem for an elastic material containing a distributed array of gas bubbles to the case when the body force depends on time. By technically constructing an approximating sequence, we are able to show the convergence of semigroups and therefore prove the main result that such spongy material can be ...
Ping Wang
wiley   +1 more source

Ground states and multiple solutions for Hamiltonian elliptic system with gradient term

open access: yesAdvances in Nonlinear Analysis, 2020
This paper is concerned with the following nonlinear Hamiltonian elliptic system with gradient ...
Zhang Wen, Zhang Jian, Mi Heilong
doaj   +1 more source

The Brezis–Nirenberg problem for nonlocal systems

open access: yesAdvances in Nonlinear Analysis, 2016
By means of variational methods we investigate existence, nonexistence as well as regularity of weak solutions for a system of nonlocal equations involving the fractional laplacian operator and with nonlinearity reaching the critical growth and ...
Faria Luiz F. O.   +4 more
doaj   +1 more source

Normalized solutions for a critical fractional Choquard equation with a nonlocal perturbation

open access: yesAdvances in Nonlinear Analysis, 2023
In this article, we study the fractional critical Choquard equation with a nonlocal perturbation: (−Δ)su=λu+α(Iμ*∣u∣q)∣u∣q−2u+(Iμ*∣u∣2μ,s*)∣u∣2μ,s*−2u,inRN,{\left(-{\Delta })}^{s}u=\lambda u+\alpha \left({I}_{{\mu }^{* }}\hspace{-0.25em}{| u| }^{q}){| u|
Lan Jiali, He Xiaoming, Meng Yuxi
doaj   +1 more source

Nonlocal Kirchhoff superlinear equations with indefinite nonlinearity and lack of compactness

open access: yes, 2019
We study the following Kirchhoff equation $$- \left(1 + b \int_{\mathbb{R}^3} |\nabla u|^2 dx \right) \Delta u + V(x) u = f(x,u), \ x \in \mathbb{R}^3.$$ A special feature of this paper is that the nonlinearity $f$ and the potential $V$ are indefinite ...
Li, Lin   +2 more
core   +2 more sources

Klein–Gordon–Maxwell Systems with Nonconstant Coupling Coefficient

open access: yesAdvanced Nonlinear Studies, 2018
We study a Klein–Gordon–Maxwell system in a bounded spatial domain under Neumann boundary conditions on the electric potential. We allow a nonconstant coupling coefficient. For sufficiently small data, we find infinitely many static solutions.
Lazzo Monica, Pisani Lorenzo
doaj   +1 more source

Least energy sign-changing solutions for Schrödinger-Poisson systems with potential well

open access: yesAdvanced Nonlinear Studies, 2022
In this article, we investigate the existence of least energy sign-changing solutions for the following Schrödinger-Poisson system −Δu+V(x)u+K(x)ϕu=f(u),x∈R3,−Δϕ=K(x)u2,x∈R3,\left\{\begin{array}{ll}-\Delta u+V\left(x)u+K\left(x)\phi u=f\left(u),\hspace{1.
Chen Xiao-Ping, Tang Chun-Lei
doaj   +1 more source

Ground States for a nonlinear Schr\"odinger system with sublinear coupling terms

open access: yes, 2015
We study the existence of ground states for the coupled Schr\"odinger system \begin{equation} \left\{\begin{array}{lll} \displaystyle -\Delta u_i+\lambda_i u_i= \mu_i |u_i|^{2q-2}u_i+\sum_{j\neq i}b_{ij} |u_j|^q|u_i|^{q-2}u_i \\ u_i\in H^1(\mathbb{R}^n)
Oliveira, Filipe, Tavares, Hugo
core   +1 more source

A Fibering Map Approach for a Laplacian System With Sign-Changing Weight Function [PDF]

open access: yes, 2014
We prove the existence of at least two positive solutions for the Laplacian system(E?)On a bounded region by using the Nehari manifold and the fibering maps associated with the Euler functional for the ...
Kazemipoor, Seyyed Sadegh   +1 more
core  

Klein-Gordon-Maxwell System in a bounded domain

open access: yes, 2008
This paper is concerned with the Klein-Gordon-Maxwell system in a bounded spatial domain. We discuss the existence of standing waves $\psi=u(x)e^{-i\omega t}$ in equilibrium with a purely electrostatic field $\mathbf{E}=-\nabla\phi(x)$.
d'Avenia, Pietro   +2 more
core   +2 more sources

Home - About - Disclaimer - Privacy