Results 31 to 40 of about 554 (70)

Mass Concentration and Asymptotic Uniqueness of Ground State for 3-Component BEC with External Potential in ℝ2

open access: yesAdvanced Nonlinear Studies, 2021
We investigate the ground states of 3-component Bose–Einstein condensates with harmonic-like trapping potentials in ℝ2{\mathbb{R}^{2}}, where the intra-component interactions μi{\mu_{i}} and the inter-component interactions βi⁢j=βj⁢i{\beta_{ij}=\beta_{ji}
Kong Yuzhen, Wang Qingxuan, Zhao Dun
doaj   +1 more source

Existence and multiplicity of solutions for a class of superlinear elliptic systems

open access: yesAdvances in Nonlinear Analysis, 2018
In this paper, we establish the existence and multiplicity of solutions for a class of superlinear elliptic systems without Ambrosetti and Rabinowitz growth condition. Our results are based on minimax methods in critical point theory.
Li Chun, Agarwal Ravi P., Wu Dong-Lun
doaj   +1 more source

The existence and multiplicity of the normalized solutions for fractional Schrödinger equations involving Sobolev critical exponent in the L2-subcritical and L2-supercritical cases

open access: yesAdvances in Nonlinear Analysis, 2022
This paper is devoted to investigate the existence and multiplicity of the normalized solutions for the following fractional Schrödinger equation: (P)(−Δ)su+λu=μ∣u∣p−2u+∣u∣2s∗−2u,x∈RN,u>0,∫RN∣u∣2dx=a2,\left\{\begin{array}{l}{\left(-\Delta )}^{s}u+\lambda
Li Quanqing, Zou Wenming
doaj   +1 more source

Ground States for a nonlinear Schr\"odinger system with sublinear coupling terms

open access: yes, 2015
We study the existence of ground states for the coupled Schr\"odinger system \begin{equation} \left\{\begin{array}{lll} \displaystyle -\Delta u_i+\lambda_i u_i= \mu_i |u_i|^{2q-2}u_i+\sum_{j\neq i}b_{ij} |u_j|^q|u_i|^{q-2}u_i \\ u_i\in H^1(\mathbb{R}^n)
Oliveira, Filipe, Tavares, Hugo
core   +1 more source

Concentration behavior of semiclassical solutions for Hamiltonian elliptic system

open access: yesAdvances in Nonlinear Analysis, 2020
In this paper, we study the following nonlinear Hamiltonian elliptic system with gradient ...
Zhang Jian   +3 more
doaj   +1 more source

Normalized solutions for a critical fractional Choquard equation with a nonlocal perturbation

open access: yesAdvances in Nonlinear Analysis, 2023
In this article, we study the fractional critical Choquard equation with a nonlocal perturbation: (−Δ)su=λu+α(Iμ*∣u∣q)∣u∣q−2u+(Iμ*∣u∣2μ,s*)∣u∣2μ,s*−2u,inRN,{\left(-{\Delta })}^{s}u=\lambda u+\alpha \left({I}_{{\mu }^{* }}\hspace{-0.25em}{| u| }^{q}){| u|
Lan Jiali, He Xiaoming, Meng Yuxi
doaj   +1 more source

Least energy sign-changing solutions for Schrödinger-Poisson systems with potential well

open access: yesAdvanced Nonlinear Studies, 2022
In this article, we investigate the existence of least energy sign-changing solutions for the following Schrödinger-Poisson system −Δu+V(x)u+K(x)ϕu=f(u),x∈R3,−Δϕ=K(x)u2,x∈R3,\left\{\begin{array}{ll}-\Delta u+V\left(x)u+K\left(x)\phi u=f\left(u),\hspace{1.
Chen Xiao-Ping, Tang Chun-Lei
doaj   +1 more source

Nonlocal Kirchhoff superlinear equations with indefinite nonlinearity and lack of compactness

open access: yes, 2019
We study the following Kirchhoff equation $$- \left(1 + b \int_{\mathbb{R}^3} |\nabla u|^2 dx \right) \Delta u + V(x) u = f(x,u), \ x \in \mathbb{R}^3.$$ A special feature of this paper is that the nonlinearity $f$ and the potential $V$ are indefinite ...
Li, Lin   +2 more
core   +2 more sources

Klein-Gordon-Maxwell System in a bounded domain

open access: yes, 2008
This paper is concerned with the Klein-Gordon-Maxwell system in a bounded spatial domain. We discuss the existence of standing waves $\psi=u(x)e^{-i\omega t}$ in equilibrium with a purely electrostatic field $\mathbf{E}=-\nabla\phi(x)$.
d'Avenia, Pietro   +2 more
core   +2 more sources

The Brezis–Nirenberg problem for nonlocal systems

open access: yesAdvances in Nonlinear Analysis, 2016
By means of variational methods we investigate existence, nonexistence as well as regularity of weak solutions for a system of nonlocal equations involving the fractional laplacian operator and with nonlinearity reaching the critical growth and ...
Faria Luiz F. O.   +4 more
doaj   +1 more source

Home - About - Disclaimer - Privacy