Results 51 to 60 of about 604 (96)

Moser-Trudinger inequalities for singular Liouville systems

open access: yes, 2015
In this paper we prove a Moser-Trudinger inequality for the Euler-Lagrange functional of a general singular Liouville system. We characterize the values of the parameters which yield coercivity for the functional and we give necessary conditions for ...
Battaglia, Luca
core   +1 more source

Klein–Gordon–Maxwell Systems with Nonconstant Coupling Coefficient

open access: yesAdvanced Nonlinear Studies, 2018
We study a Klein–Gordon–Maxwell system in a bounded spatial domain under Neumann boundary conditions on the electric potential. We allow a nonconstant coupling coefficient. For sufficiently small data, we find infinitely many static solutions.
Lazzo Monica, Pisani Lorenzo
doaj   +1 more source

Stable anisotropic minimal hypersurfaces in $\mathbf {R}^{4}$

open access: yesForum of Mathematics, Pi, 2023
We show that a complete, two-sided, stable immersed anisotropic minimal hypersurface in $\mathbf {R}^4$ has intrinsic cubic volume growth, provided the parametric elliptic integral is $C^2$ -close to the area functional.
Otis Chodosh, Chao Li
doaj   +1 more source

Sharp non-existence results of prescribed L^2-norm solutions for some class of Schr\"odinger-Poisson and quasilinear equations

open access: yes, 2012
In this paper we study the existence of minimizers for $$ F(u) = \1/2\int_{\R^3} |\nabla u|^2 dx + 1/4\int_{\R^3}\int_{\R^3}\frac{| u(x) |^2| u(y) |^2}{| x-y |}dxdy-\frac{1}{p}\int_{\R^3}| u |^p dx$$ on the constraint $$S(c) = \{u \in H^1(\R^3) : \int_ ...
Jeanjean, Louis, Luo, Tingjian
core   +2 more sources

(p,Q) systems with critical singular exponential nonlinearities in the Heisenberg group

open access: yesOpen Mathematics, 2020
The paper deals with the existence of solutions for (p,Q)(p,Q) coupled elliptic systems in the Heisenberg group, with critical exponential growth at infinity and singular behavior at the origin.
Pucci Patrizia, Temperini Letizia
doaj   +1 more source

Least energy sign-changing solutions for Schrödinger-Poisson systems with potential well

open access: yesAdvanced Nonlinear Studies, 2022
In this article, we investigate the existence of least energy sign-changing solutions for the following Schrödinger-Poisson system −Δu+V(x)u+K(x)ϕu=f(u),x∈R3,−Δϕ=K(x)u2,x∈R3,\left\{\begin{array}{ll}-\Delta u+V\left(x)u+K\left(x)\phi u=f\left(u),\hspace{1.
Chen Xiao-Ping, Tang Chun-Lei
doaj   +1 more source

Multiple solutions for semilinear elliptic systems involving critical Sobolev exponent

open access: yesDifferential and Integral Equations, 2007
The effect of the domain topology on the multiplicity of solutions for a semilinear elliptic system with critical Sobolev exponent is discussed. We show that if the coupling term is sufficiently small, then there exist at least cat Ω positive solutions ...
M. Ishiwata
semanticscholar   +1 more source

Optimal control for cooperative systems involving fractional Laplace operators

open access: yesJournal of Inequalities and Applications, 2021
In this work, the elliptic 2 × 2 $2\times 2$ cooperative systems involving fractional Laplace operators are studied. Due to the nonlocality of the fractional Laplace operator, we reformulate the problem into a local problem by an extension problem. Then,
H. M. Serag   +2 more
doaj   +1 more source

Existence and multiplicity of solutions for a class of superlinear elliptic systems

open access: yesAdvances in Nonlinear Analysis, 2018
In this paper, we establish the existence and multiplicity of solutions for a class of superlinear elliptic systems without Ambrosetti and Rabinowitz growth condition. Our results are based on minimax methods in critical point theory.
Li Chun, Agarwal Ravi P., Wu Dong-Lun
doaj   +1 more source

Ground State Solutions for the Nonlinear Schrödinger–Bopp–Podolsky System with Critical Sobolev Exponent

open access: yesAdvanced Nonlinear Studies, 2020
In this paper, we study the existence of ground state solutions for the nonlinear Schrödinger–Bopp–Podolsky system with critical Sobolev ...
Li Lin, Pucci Patrizia, Tang Xianhua
doaj   +1 more source

Home - About - Disclaimer - Privacy