Results 11 to 20 of about 22 (22)
Nonzero Positive Solutions of Elliptic Systems with Gradient Dependence and Functional BCs
We discuss, by topological methods, the solvability of systems of second-order elliptic differential equations subject to functional boundary conditions under the presence of gradient terms in the nonlinearities.
Biagi Stefano+2 more
doaj +1 more source
Nonautonomous Klein–Gordon–Maxwell systems in a bounded domain
This paper deals with the Klein–Gordon–Maxwell system in a bounded spatial domain with a nonuniform coupling. We discuss the existence of standing waves in equilibrium with a purely electrostatic field, assuming homogeneous Dirichlet boundary conditions ...
d'Avenia Pietro+2 more
doaj +1 more source
Two-Phase Free Boundary Problems: From Existence to Smoothness
We describe the theory we developed in recent times concerning two-phasefree boundary problems governed by elliptic operators with forcing terms.Our results range from existence of viscosity solutions to smoothness ofboth solutions and free boundaries ...
De Silva Daniela+2 more
doaj +1 more source
Infinitely many solutions for Hamiltonian system with critical growth
In this article, we consider the following elliptic system of Hamiltonian-type on a bounded domain:−Δu=K1(∣y∣)∣v∣p−1v,inB1(0),−Δv=K2(∣y∣)∣u∣q−1u,inB1(0),u=v=0on∂B1(0),\left\{\begin{array}{ll}-\Delta u={K}_{1}\left(| y| ){| v| }^{p-1}v,\hspace{1.0em ...
Guo Yuxia, Hu Yichen
doaj +1 more source
Klein–Gordon–Maxwell Systems with Nonconstant Coupling Coefficient
We study a Klein–Gordon–Maxwell system in a bounded spatial domain under Neumann boundary conditions on the electric potential. We allow a nonconstant coupling coefficient. For sufficiently small data, we find infinitely many static solutions.
Lazzo Monica, Pisani Lorenzo
doaj +1 more source
High-energy solutions for coupled Schrödinger systems with critical growth and lack of compactness
This article deals with the existence of high-energy positive solutions for the following coupled Schrödinger system with critical exponent: −Δu+V1(x)u=μ1u3+βuv2,x∈Ω,−Δv+V2(x)v=βu2v+μ2v3,x∈Ω,u,v∈D01,2(Ω)\left\{\begin{array}{l}-\Delta u+{V}_{1}\left(x)u={\
Guan Wen, Wang Da-Bin, Xie Huafei
doaj +1 more source
Parabolic Biased Infinity Laplacian Equation Related to the Biased Tug-of-War
In this paper, we study the parabolic inhomogeneous β-biased infinity Laplacian equation arising from the β-biased tug-of ...
Liu Fang, Jiang Feida
doaj +1 more source
Considering the prevalence of asymptomatic individuals during the spread of disease, this article develops a model of degenerate reaction diffusion Cholera with asymptomatic individuals. First, the well-posedness of model is studied, including the global
Wang Shengfu, Nie Linfei
doaj +1 more source
In this paper, we study coupled elliptic systems with gradient dependent right-hand sides and nonlinear boundary conditions, where the left-hand sides are driven by so-called double phase operators.
Frisch Michal Maria, Winkert Patrick
doaj +1 more source
This study proposed and analyzed a vector-borne reaction–diffusion–advection model with vector-bias mechanism and heterogeneous parameters in one-dimensional habitat.
Liu Jiaxing, Wang Jinliang
doaj +1 more source