The paper deals with the study of the existence of weak positive solutions for a new class of the system of elliptic differential equations with respect to the symmetry conditions and the right hand side which has been defined as multiplication of two ...
Youcef Bouizem +2 more
doaj +2 more sources
On a system of multi-component Ginzburg-Landau vortices
We study the asymptotic behavior of solutions for nn-component Ginzburg-Landau equations as ε→0\varepsilon \to 0. We prove that the minimizers converge locally in any Ck{C}^{k}-norm to a solution of a system of generalized harmonic map equations.
Hadiji Rejeb, Han Jongmin, Sohn Juhee
doaj +1 more source
Large Energy Bubble Solutions for Schrödinger Equation with Supercritical Growth
We consider the following nonlinear Schrödinger equation involving supercritical growth:
Guo Yuxia, Liu Ting
doaj +1 more source
Analysis of positive solutions to one-dimensional generalized double phase problems
We study positive solutions to the one-dimensional generalized double phase problems of the form: −(a(t)φp(u′)+b(t)φq(u′))′=λh(t)f(u),t∈(0,1),u(0)=0=u(1),\left\{\begin{array}{l}-(a\left(t){\varphi }_{p}\left(u^{\prime} )+b\left(t){\varphi }_{q}\left(u ...
Son Byungjae, Sim Inbo
doaj +1 more source
A Liouville theorem for the Hénon-Lane-Emden system in four and five dimensions
In the present article, we investigate the following Hénon-Lane-Emden elliptic system: −Δu=∣x∣avp,x∈RN,−Δv=∣x∣buq,x∈RN,\left\{\begin{array}{ll}-\Delta u={| x| }^{a}{v}^{p},& x\in {{\mathbb{R}}}^{N},\\ -\Delta v={| x| }^{b}{u}^{q},& x\in {{\mathbb{R}}}^{N}
Li Hang
doaj +1 more source
Multiplicity of concentrating solutions for a class of magnetic Schrödinger-Poisson type equation
In this paper, we study the following nonlinear magnetic Schrödinger-Poisson type ...
Liu Yueli, Li Xu, Ji Chao
doaj +1 more source
Quantum cosmological Friedman models with a Yang-Mills field and positive energy levels [PDF]
We prove the existence of a spectral resolution of the Wheeler-DeWitt equation when the matter field is provided by a Yang-Mills field, with or without mass term, if the spatial geometry of the underlying spacetime is homothetic to $\R[3]$.
Claus Gerhardt +3 more
core +3 more sources
On a weighted elliptic equation of N-Kirchhoff type with double exponential growth
In this work, we study the weighted Kirchhoff problem −g∫Bσ(x)∣∇u∣Ndxdiv(σ(x)∣∇u∣N−2∇u)=f(x,u)inB,u>0inB,u=0on∂B,\left\{\begin{array}{ll}-g\left(\mathop{\displaystyle \int }\limits_{B}\sigma \left(x)| \nabla u\hspace{-0.25em}{| }^{N}{\rm{d}}x\right){\rm ...
Abid Imed, Baraket Sami, Jaidane Rached
doaj +1 more source
Existence results for a fourth order partial differential equation arising in condensed matter physics [PDF]
We study a higher order parabolic partial differential equation that arises in the context of condensed matter physics. It is a fourth order semilinear equation whose nonlinearity is the determinant of the Hessian matrix of the solution. We consider this
Escudero, Carlos +4 more
core +2 more sources
On the location of two blow up points on an annulus for the mean field equation [PDF]
We consider the mean field equation on two-dimensional annular domains, and prove that if $P$ and $Q$ are two blow up points of a blowing-up solution sequence of the equation, then we must have $P=-Q$.Comment: To appear in ...
Grossi, M., Takahashi, F.
core +3 more sources

