Results 11 to 20 of about 2,468 (90)
Boundary regularity for manifold constrained p(x)‐harmonic maps
Abstract We prove partial and full boundary regularity for manifold constrained p(x)‐harmonic maps.
Iwona Chlebicka +2 more
wiley +1 more source
Abstract In this paper, we study a class of fractional Schrödinger equations involving logarithmic and critical non‐linearities on an unbounded domain, and show that such an equation with positive or sign‐changing weight potentials admits at least one positive ground state solution and the associated energy is positive (or negative).
Haining Fan, Zhaosheng Feng, Xingjie Yan
wiley +1 more source
Regularity for the two‐phase singular perturbation problems
Abstract We prove that an a priori bounded mean oscillation (BMO) gradient estimate for the two‐phase singular perturbation problem implies Lipschitz regularity for the limits. This problem arises in the mathematical theory of combustion, where the reaction diffusion is modeled by the p‐Laplacian. A key tool in our approach is the weak energy identity.
Aram Karakhanyan
wiley +1 more source
On double phase Kirchhoff problems with singular nonlinearity
In this paper, we study multiplicity results for double phase problems of Kirchhoff type with right-hand sides that include a parametric singular term and a nonlinear term of subcritical growth.
Arora Rakesh +3 more
doaj +1 more source
The obstacle problem for the infinity fractional laplacian [PDF]
Given g an α-H¨older continuous function defined on the boundary of a bounded domain Ω and given ψ a continuous obstacle defined in Ω, in this article, we find u an α-H¨older extension of g in Ω with u ≥ ψ.
Moreno Mérida, Lourdes +1 more
core +1 more source
We prove a homogenization result for monotone operators by using the method of multiscale convergence. More precisely, we study the asymptotic behavior as ε → 0 of the solutions uε of the nonlinear equation divaε(x, ∇uε) = divbε, where both aε and bε oscillate rapidly on several microscopic scales and aε satisfies certain continuity, monotonicity and
Andreas Almqvist +4 more
wiley +1 more source
Leray-Schauder’s solution for a nonlocal problem in a fractional Orlicz-Sobolev space
Via Leray-Schauder’s nonlinear alternative, we obtain the existence of a weak solution for a nonlocal problem driven by an operator of elliptic type in a fractional Orlicz-Sobolev space, with homogeneous Dirichlet boundary conditions.
Boumazourh Athmane, Srati Mohammed
doaj +1 more source
[Retracted] Nonlinear eigenvalue problems in Sobolev spaces with variable exponent
We study the boundary value problem −div?((|?u|p1(x)−2 + |?u|p2(x)−2)?u) = f(x, u) in O, u = 0 on ?O, where O is a smooth bounded domain in RN. We focus on the cases when f±(x, ??u) = ±(−?|u|m(x)−2u + |u|q(x)−2u), where m(x)?max??{p12(x),p(x)}
Teodora-Liliana Dinu, George Isac
wiley +1 more source
Eigencurves of the p(·)-Biharmonic operator with a Hardy-type term
This paper is devoted to the study of the homogeneous Dirichlet problem for a singular nonlinear equation which involves the p(·)-biharmonic operator and a Hardy-type term that depend on the solution and with a parameter λ.
Laghzal Mohamed +3 more
doaj +1 more source
Multiple solutions to a nonlinear elliptic equation involving Paneitz type operators
This paper deals with an elliptic equation involving Paneitz type operators on compact Riemannian manifolds with concave‐convex nonlinearities and a real parameter. Nonlocal and multiple existence results are established. Characteristic values of the real parameter are introduced and their role in the change of the energy sign and the existence of ...
Abdallah El Hamidi
wiley +1 more source

