Results 41 to 50 of about 4,303 (113)
Unilateral boundary value problems with jump discontinuities
Using the critical point theory of Szulkin (1986), we study elliptic problems with unilateral boundary conditions and discontinuous nonlinearities. We do not use the method of upper and lower solutions. We prove two existence theorems: one when the right‐hand side is nondecreasing and the other when it is nonincreasing.
Nikolaos Halidias
wiley +1 more source
Quantum cosmological Friedman models with a Yang-Mills field and positive energy levels
We prove the existence of a spectral resolution of the Wheeler-DeWitt equation when the matter field is provided by a Yang-Mills field, with or without mass term, if the spatial geometry of the underlying spacetime is homothetic to $\R[3]$.
Claus Gerhardt+3 more
core +2 more sources
Uniqueness and radial symmetry for an inverse elliptic equation
We consider an inverse rearrangement semilinear partial differential equation in a 2‐dimensional ball and show that it has a unique maximizing energy solution. The solution represents a confined steady flow containing a vortex and passing over a seamount. Our approach is based on a rearrangement variational principle extensively developed by G.
B. Emamizadeh, M. H. Mehrabi
wiley +1 more source
Existence of entire explosive positive radial solutions of quasilinear elliptic systems
Our main purpose is to establish that entire explosive positive radial solutions exist for quasilinear elliptic systems. The main results of the present paper are new and extend previous results.
Yang Zuodong
wiley +1 more source
This paper investigates the dynamic behavior analysis on the prey-predator model with ratio-dependent Monod-Haldane response function under the homogeneous Dirichlet boundary conditions, which is used to simulate a class of biological system.
Feng Xiaozhou, Song Yi, An Xiaomin
doaj +1 more source
Singular measure as principal eigenfunction of some nonlocal operators
In this paper, we are interested in the spectral properties of the generalised principal eigenvalue of some nonlocal operator. That is, we look for the existence of some particular solution $(\lambda,\phi)$ of a nonlocal operator. $$\int_{\O}K(x,y)\phi(y)
Coville, Jerome
core +1 more source
Uniqueness of semilinear elliptic inverse problem
We consider the uniqueness of the inverse problem for a semilinear elliptic differential equation with Dirichlet condition. The necessary and sufficient condition of unique solution is obtained. We improved the results obtained by Isakov and Sylvester (1994) for the same problem.
Chaochun Qu, Ping Wang
wiley +1 more source
On certain nonlinear elliptic systems with indefinite terms
We consider an elliptic quasi linear systems with indefinite term on a bounded domain. Under suitable conditions, existence and positivity results for solutions are given. Submitted April 2, 2002. Published October 2, 2002.
Ahmed Bensedik, Mohammed Bouchekif
doaj
On the removability of isolated singular points for elliptic equations involving variable exponent
In this paper, we study the problem of removable isolated singularities for elliptic equations with variable exponents. We give a sufficient condition for removability of the isolated singular point for the equations in W1,p(x)(Ω)${W^{1,p(x)}(\Omega )}$.
Fu Yongqiang, Shan Yingying
doaj +1 more source
Multiple solutions for weighted Kirchhoff equations involving critical Hardy-Sobolev exponent
In this article, we consider a class of Kirchhoff equations with critical Hardy-Sobolev exponent and indefinite nonlinearity, which has not been studied in the literature. We prove very nicely that this equation has at least two solutions in ℝ3. And some
Shen Zupei, Yu Jianshe
doaj +1 more source