Results 21 to 30 of about 80 (64)
On a class of nonlocal nonlinear Schrödinger equations with potential well
In this paper we investigate the existence, multiplicity and asymptotic behavior of positive solution for the nonlocal nonlinear Schrödinger equations. We exploiting the relationship between the Nehari manifold and eigenvalue problems to discuss how the ...
Wu Tsung-fang
doaj +1 more source
Asymptotic properties of critical points for subcritical Trudinger-Moser functional
On a smooth bounded domain we study the Trudinger-Moser functional Eα(u)≔∫Ω(eαu2−1)dx,u∈H1(Ω){E}_{\alpha }\left(u):= \mathop{\int }\limits_{\Omega }({e}^{\alpha {u}^{2}}-1){\rm{d}}x,\hspace{1.0em}u\in {H}^{1}\left(\Omega ) for α∈(0,2π)\alpha \in \left(0 ...
Hashizume Masato
doaj +1 more source
Generic properties of the Rabinowitz unbounded continuum
In this article, we prove that, generically in the sense of domain variations, any solution to a nonlinear eigenvalue problem is either nondegenerate or the Crandall-Rabinowitz transversality condition that is satisfied. We then deduce that, generically,
Bartolucci Daniele+3 more
doaj +1 more source
. This paper is concerned with semilinear Volterra diffusion equations with spatial inhomogeneity and advection. We intend to study the effects of interaction among diffusion, advection and Volterra integral under spatially inhomogeneous environments ...
Yusuke Yoshida, Yoshio Yamada
semanticscholar +1 more source
Existence and concentration behavior of positive solutions to Schrödinger-Poisson-Slater equations
This article is directed to the study of the following Schrödinger-Poisson-Slater type equation: −ε2Δu+V(x)u+ε−α(Iα∗∣u∣2)u=λ∣u∣p−1uinRN,-{\varepsilon }^{2}\Delta u+V\left(x)u+{\varepsilon }^{-\alpha }\left({I}_{\alpha }\ast | u{| }^{2})u=\lambda | u{| }^{
Li Yiqing, Zhang Binlin, Han Xiumei
doaj +1 more source
In this article, we study the existence of ground state solutions for the Schrödinger-Poisson-Slater type equation with the Coulomb-Sobolev critical growth: −Δu+14π∣x∣∗∣u∣2u=∣u∣u+μ∣u∣p−2u,inR3,-\Delta u+\left(\frac{1}{4\pi | x| }\ast | u{| }^{2}\right)u=|
Lei Chunyu, Lei Jun, Suo Hongmin
doaj +1 more source
This work is mainly motivated by the study of periodic wave train solutions for the so-called Gurtin-McCamy equation. To that aim we construct a smooth center manifold for a rather general class of abstract second order semi-linear differential equations
A. Ducrot, Pierre Magal
semanticscholar +1 more source
Existence of normalized solutions for the coupled elliptic system with quadratic nonlinearity
In the present paper, we study the existence of the normalized solutions for the following coupled elliptic system with quadratic nonlinearity −Δu−λ1u=μ1∣u∣u+βuvinRN,−Δv−λ2v=μ2∣v∣v+β2u2inRN,\left\{\begin{array}{ll}-\Delta u-{\lambda }_{1}u={\mu }_{1}| u|
Wang Jun, Wang Xuan, Wei Song
doaj +1 more source
Existence and Asymptotic Profile of Nodal Solutions to Supercritical Problems
We establish the existence of nodal solutions to the supercritical ...
Clapp Mónica, Pacella Filomena
doaj +1 more source
Ground State Solutions for a Semilinear Elliptic Equation Involving Concave-Convex Nonlinearities
This work is devoted to the existence and multiplicity properties of the ground state solutions of the semilinear boundary value problem−∆u=λa(x)u|u|q−2+ b(x)u|u|2 ∗−2 in a bounded domain coupled with Dirichlet boundary condition. Here 2∗ is the critical
Khazaee, Kohpar, Khademloo
semanticscholar +1 more source