Results 21 to 30 of about 516 (74)
Existence of normalized solutions for the coupled elliptic system with quadratic nonlinearity
In the present paper, we study the existence of the normalized solutions for the following coupled elliptic system with quadratic nonlinearity −Δu−λ1u=μ1∣u∣u+βuvinRN,−Δv−λ2v=μ2∣v∣v+β2u2inRN,\left\{\begin{array}{ll}-\Delta u-{\lambda }_{1}u={\mu }_{1}| u|
Wang Jun, Wang Xuan, Wei Song
doaj +1 more source
On the problem of maximal $L^q$-regularity for viscous Hamilton-Jacobi equations
For $q>2, \gamma > 1$, we prove that maximal regularity of $L^q$ type holds for periodic solutions to $-\Delta u + |Du|^\gamma = f$ in $\mathbb{R}^d$, under the (sharp) assumption $q > d \frac{\gamma-1}\gamma$.Comment: 11 ...
Cirant, Marco, Goffi, Alessandro
core +1 more source
Concentration with a single sign-changing layer at the higher critical exponents
We exhibit a new concentration phenomenon for the supercritical ...
Clapp Mónica, Faya Jorge
doaj +1 more source
Nonexistence of small, odd breathers for a class of nonlinear wave equations
In this note, we show that for a large class of nonlinear wave equations with odd nonlinearities, any globally defined odd solution which is small in the energy space decays to $0$ in the local energy norm.
Kowalczyk, Michał +2 more
core +2 more sources
Existence of groundstates for a class of nonlinear Choquard equations [PDF]
We prove the existence of a nontrivial solution (u \in H^1 (\R^N)) to the nonlinear Choquard equation [- \Delta u + u = \bigl(I_\alpha \ast F (u)\bigr) F' (u) \quad \text{in (\R^N),}] where (I_\alpha) is a Riesz potential, under almost necessary ...
Jean, Van Schaftingen, Vitaly Moroz
core +1 more source
On a class of nonlocal nonlinear Schrödinger equations with potential well
In this paper we investigate the existence, multiplicity and asymptotic behavior of positive solution for the nonlocal nonlinear Schrödinger equations. We exploiting the relationship between the Nehari manifold and eigenvalue problems to discuss how the ...
Wu Tsung-fang
doaj +1 more source
Existence and concentration behavior of positive solutions to Schrödinger-Poisson-Slater equations
This article is directed to the study of the following Schrödinger-Poisson-Slater type equation: −ε2Δu+V(x)u+ε−α(Iα∗∣u∣2)u=λ∣u∣p−1uinRN,-{\varepsilon }^{2}\Delta u+V\left(x)u+{\varepsilon }^{-\alpha }\left({I}_{\alpha }\ast | u{| }^{2})u=\lambda | u{| }^{
Li Yiqing, Zhang Binlin, Han Xiumei
doaj +1 more source
In this paper we study the following nonlinear fractional Hartree (or Choquard-Pekar) equation (−Δ)su+μu=(Iα*F(u))F′(u) inRN, ${\left(-{\Delta}\right)}^{s}u+\mu u=\left({I}_{\alpha }{\ast}F\left(u\right)\right){F}^{\prime }\left(u\right)\quad \text{in} {\
Cingolani Silvia +2 more
doaj +1 more source
New existence results for the mean field equation on compact surfaces via degree theory [PDF]
We consider a class of equations with exponential non-linearities on a compact surface which arises as the mean field equation of the equilibrium turbulence with arbitrarily signed vortices. We prove an existence result via degree theory. This yields new
Jevnikar, Aleks
core
In this article, we study the existence of ground state solutions for the Schrödinger-Poisson-Slater type equation with the Coulomb-Sobolev critical growth: −Δu+14π∣x∣∗∣u∣2u=∣u∣u+μ∣u∣p−2u,inR3,-\Delta u+\left(\frac{1}{4\pi | x| }\ast | u{| }^{2}\right)u=|
Lei Chunyu, Lei Jun, Suo Hongmin
doaj +1 more source

