Results 21 to 30 of about 59 (54)
Existence of normalized solutions for the coupled elliptic system with quadratic nonlinearity
In the present paper, we study the existence of the normalized solutions for the following coupled elliptic system with quadratic nonlinearity −Δu−λ1u=μ1∣u∣u+βuvinRN,−Δv−λ2v=μ2∣v∣v+β2u2inRN,\left\{\begin{array}{ll}-\Delta u-{\lambda }_{1}u={\mu }_{1}| u|
Wang Jun, Wang Xuan, Wei Song
doaj +1 more source
We study a phase field model proposed recently in the context of tumour growth. The model couples a Cahn–Hilliard–Brinkman (CHB) system with an elliptic reaction-diffusion equation for a nutrient.
Ebenbeck Matthias, Lam Kei Fong
doaj +1 more source
Existence and Asymptotic Profile of Nodal Solutions to Supercritical Problems
We establish the existence of nodal solutions to the supercritical ...
Clapp Mónica, Pacella Filomena
doaj +1 more source
Fast and Slow Decaying Solutions of Lane–Emden Equations Involving Nonhomogeneous Potential
Our purpose in this paper is to study positive solutions of the Lane–Emden ...
Chen Huyuan, Huang Xia, Zhou Feng
doaj +1 more source
In this paper we study the following nonlinear fractional Hartree (or Choquard-Pekar) equation (−Δ)su+μu=(Iα*F(u))F′(u) inRN, ${\left(-{\Delta}\right)}^{s}u+\mu u=\left({I}_{\alpha }{\ast}F\left(u\right)\right){F}^{\prime }\left(u\right)\quad \text{in} {\
Cingolani Silvia +2 more
doaj +1 more source
Periodic Solutions of Non-autonomous Allen–Cahn Equations Involving Fractional Laplacian
We consider periodic solutions of the following problem associated with the fractional Laplacian: (-∂xx)su(x)+∂uF(x,u(x))=0{(-\partial_{xx})^{s}u(x)+\partial_{u}F(x,u(x))=0} in ℝ{\mathbb{R}}.
Feng Zhenping, Du Zhuoran
doaj +1 more source
Lane-Emden equations perturbed by nonhomogeneous potential in the super critical case
Our purpose of this paper is to study positive solutions of Lane-Emden ...
Ma Yong, Wang Ying, Ledesma César T.
doaj +1 more source
In this paper, for more general f, g and a, b, we obtain conditions about the existence and boundary behavior of solutions to boundary blow-up elliptic problems ▵u=a(x)g(u)+b(x)f(u)|∇u|q,x∈Ω,u|∂Ω=+∞$ \triangle u=a(x)g(u)+ b(x) f(u)|\nabla u|^q,\quad x\in
Zhang Zhijun
doaj +1 more source
We study the semilinear elliptic ...
Ghergu Marius +2 more
doaj +1 more source
Supercritical Hénon-type equation with a forcing term
This article is concerned with the structure of solutions to the elliptic problem for a Hénon-type equation with a forcing term: −Δu=α(x)up+κμ,inRN,u>0,inRN,(Pκ)\hspace{11.3em}-\Delta u=\alpha \left(x){u}^{p}+\kappa \mu ,\hspace{1.0em}\hspace{0.1em}\text{
Ishige Kazuhiro, Katayama Sho
doaj +1 more source

