Results 21 to 30 of about 59 (53)
Existence and Asymptotic Profile of Nodal Solutions to Supercritical Problems
We establish the existence of nodal solutions to the supercritical ...
Clapp Mónica, Pacella Filomena
doaj +1 more source
In this article, we study the existence of ground state solutions for the Schrödinger-Poisson-Slater type equation with the Coulomb-Sobolev critical growth: −Δu+14π∣x∣∗∣u∣2u=∣u∣u+μ∣u∣p−2u,inR3,-\Delta u+\left(\frac{1}{4\pi | x| }\ast | u{| }^{2}\right)u=|
Lei Chunyu, Lei Jun, Suo Hongmin
doaj +1 more source
Fast and Slow Decaying Solutions of Lane–Emden Equations Involving Nonhomogeneous Potential
Our purpose in this paper is to study positive solutions of the Lane–Emden ...
Chen Huyuan, Huang Xia, Zhou Feng
doaj +1 more source
Periodic Solutions of Non-autonomous Allen–Cahn Equations Involving Fractional Laplacian
We consider periodic solutions of the following problem associated with the fractional Laplacian: (-∂xx)su(x)+∂uF(x,u(x))=0{(-\partial_{xx})^{s}u(x)+\partial_{u}F(x,u(x))=0} in ℝ{\mathbb{R}}.
Feng Zhenping, Du Zhuoran
doaj +1 more source
Supercritical Hénon-type equation with a forcing term
This article is concerned with the structure of solutions to the elliptic problem for a Hénon-type equation with a forcing term: −Δu=α(x)up+κμ,inRN,u>0,inRN,(Pκ)\hspace{11.3em}-\Delta u=\alpha \left(x){u}^{p}+\kappa \mu ,\hspace{1.0em}\hspace{0.1em}\text{
Ishige Kazuhiro, Katayama Sho
doaj +1 more source
Infinitely many solutions for cubic nonlinear Schrödinger equations in dimension four
We extend Chen, Wei and Yan’s constructions of families of solutions with unbounded energies [5] to the case of cubic nonlinear Schrödinger equations in the optimal dimension four.
Vétois Jérôme, Wang Shaodong
doaj +1 more source
The existence of L 2–normalized solutions is studied for the equation −Δu+μu=f(x,u) inRN,∫RNu2dx=m. $-{\Delta}u+\mu u=f\left(x,u\right)\quad \quad \text{in} {\mathbf{R}}^{N},\quad {\int }_{{\mathbf{R}}^{N}}{u}^{2} \mathrm{d}x=m.$ Here m > 0 and f(x, s)
Ikoma Norihisa, Yamanobe Mizuki
doaj +1 more source
In this article, we study the following Choquard equation: −Δu+u=(Iα⋆u2)u,x∈R3,-\Delta u+u=\left({{\rm{I}}}_{\alpha }\star {u}^{2})u,\hspace{1.0em}x\in {{\mathbb{R}}}^{3}, where Iα{{\rm{I}}}_{\alpha } is the Riesz potential and α\alpha is sufficiently ...
Luo Huxiao, Zhang Dingliang, Xu Yating
doaj +1 more source
Lane-Emden equations perturbed by nonhomogeneous potential in the super critical case
Our purpose of this paper is to study positive solutions of Lane-Emden ...
Ma Yong, Wang Ying, Ledesma César T.
doaj +1 more source
We study a phase field model proposed recently in the context of tumour growth. The model couples a Cahn–Hilliard–Brinkman (CHB) system with an elliptic reaction-diffusion equation for a nutrient.
Ebenbeck Matthias, Lam Kei Fong
doaj +1 more source