Results 41 to 50 of about 526 (85)
We study a phase field model proposed recently in the context of tumour growth. The model couples a Cahn–Hilliard–Brinkman (CHB) system with an elliptic reaction-diffusion equation for a nutrient.
Ebenbeck Matthias, Lam Kei Fong
doaj +1 more source
Lane-Emden equations perturbed by nonhomogeneous potential in the super critical case
Our purpose of this paper is to study positive solutions of Lane-Emden ...
Ma Yong, Wang Ying, Ledesma César T.
doaj +1 more source
Conformally covariant parameterizations for relativistic initial data
We revisit the Lichnerowicz-York method, and an alternative method of York, in order to obtain some conformally covariant systems.
Delay, Erwann
core +2 more sources
Fast and Slow Decaying Solutions of Lane–Emden Equations Involving Nonhomogeneous Potential
Our purpose in this paper is to study positive solutions of the Lane–Emden ...
Chen Huyuan, Huang Xia, Zhou Feng
doaj +1 more source
A concentration phenomenon for semilinear elliptic equations
For a domain $\Omega\subset\dR^N$ we consider the equation $ -\Delta u + V(x)u = Q_n(x)\abs{u}^{p-2}u$ with zero Dirichlet boundary conditions and $p\in(2,2^*)$.
A.V. Buryak +16 more
core +1 more source
Periodic Solutions of Non-autonomous Allen–Cahn Equations Involving Fractional Laplacian
We consider periodic solutions of the following problem associated with the fractional Laplacian: (-∂xx)su(x)+∂uF(x,u(x))=0{(-\partial_{xx})^{s}u(x)+\partial_{u}F(x,u(x))=0} in ℝ{\mathbb{R}}.
Feng Zhenping, Du Zhuoran
doaj +1 more source
Supercritical Hénon-type equation with a forcing term
This article is concerned with the structure of solutions to the elliptic problem for a Hénon-type equation with a forcing term: −Δu=α(x)up+κμ,inRN,u>0,inRN,(Pκ)\hspace{11.3em}-\Delta u=\alpha \left(x){u}^{p}+\kappa \mu ,\hspace{1.0em}\hspace{0.1em}\text{
Ishige Kazuhiro, Katayama Sho
doaj +1 more source
A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart
We establish the nonexistence of nontrivial ancient solutions to the nonlinear heat equation $u_t=\Delta u+|u|^{p-1}u$ which are smaller in absolute value than the self-similar radial singular steady state, provided that the exponent $p$ is strictly ...
Sourdis, Christos
core
The existence of L 2–normalized solutions is studied for the equation −Δu+μu=f(x,u) inRN,∫RNu2dx=m. $-{\Delta}u+\mu u=f\left(x,u\right)\quad \quad \text{in} {\mathbf{R}}^{N},\quad {\int }_{{\mathbf{R}}^{N}}{u}^{2} \mathrm{d}x=m.$ Here m > 0 and f(x, s)
Ikoma Norihisa, Yamanobe Mizuki
doaj +1 more source
In this paper, for more general f, g and a, b, we obtain conditions about the existence and boundary behavior of solutions to boundary blow-up elliptic problems ▵u=a(x)g(u)+b(x)f(u)|∇u|q,x∈Ω,u|∂Ω=+∞$ \triangle u=a(x)g(u)+ b(x) f(u)|\nabla u|^q,\quad x\in
Zhang Zhijun
doaj +1 more source

