Results 51 to 60 of about 516 (74)
Let Ω⊂Rn\Omega \subset {{\bf{R}}}^{n} be a smooth bounded domain. In this article, we prove a result of which the following is a by-product: Let q∈]0,1[q\in ]0,1{[}, α∈L∞(Ω)\alpha \in {L}^{\infty }\left(\Omega ), with α>0\alpha \gt 0, and k∈Nk\in {\bf{N}}
Ricceri Biagio
doaj +1 more source
Large versus bounded solutions to sublinear elliptic problems
Let $L $ be a second order elliptic operator with smooth coefficients defined on a domain $\Omega \subset \mathbb{R}^d$ (possibly unbounded), $d\geq 3$.
Damek, Ewa, Ghardallou, Zeineb
core +1 more source
Existence of a positive solution for nonlinear Schrödinger equations with general nonlinearity
We study the following nonlinear Schrödinger equations: -Δu+V(x)u=f(u)inℝN.$ - \Delta u + V(x) u = f(u) \quad \text{in } {\mathbb {R}^N}. $ The purpose of this paper is to establish the existence of a positive solution under general conditions which are ...
Sato Yohei, Shibata Masataka
doaj +1 more source
Infinitely many normalized solutions for Schrödinger equations with local sublinear nonlinearity
In this article, we investigate the following Schrödinger equation: −Δu=h(x)g(u)+λuinRN,∫RN∣u∣2dx=au∈H1(RN),\left\{\begin{array}{ll}-\Delta u=h\left(x)g\left(u)+\lambda u\hspace{1.0em}& \hspace{-0.2em}\text{in}\hspace{0.1em}\hspace{0.33em}{{\mathbb{R}}}^{
Xu Qin, Li Gui-Dong
doaj +1 more source
We prove the existence of extremals for fractional Moser–Trudinger inequalities in an interval and on the whole real line. In both cases we use blow-up analysis for the corresponding Euler–Lagrange equation, which requires new sharp estimates obtained ...
Mancini Gabriele, Martinazzi Luca
doaj +1 more source
Nonexistence of positive radial solutions for a problem with singular potential
This article completes the picture in the study of positive radial solutions in the function space 𝒟1,2(ℝN)∩L2(ℝN,|x|-αdx)∩Lp(ℝN)${{\mathcal {D}^{1,2}({\mathbb {R}^N}) \cap L^2({{\mathbb {R}^N}, | x |^{-\alpha } dx})\cap L^p({\mathbb {R}^N})}}$ for the ...
Catrina Florin
doaj +1 more source
An upper bound for the least energy of a sign-changing solution to a zero mass problem
We give an upper bound for the least possible energy of a sign-changing solution to the nonlinear scalar field equation −Δu=f(u),u∈D1,2(RN), $-{\Delta}u=f\left(u\right), u\in {D}^{1,2}\left({\mathrm{R}}^{N}\right),$ where N ≥ 5 and the nonlinearity f is
Clapp Mónica +2 more
doaj +1 more source
Limit profiles and uniqueness of ground states to the nonlinear Choquard equations
Consider nonlinear Choquard ...
Seok Jinmyoung
doaj +1 more source
We study the existence problem for semilinear equations (E): −Au = f(⋅, u) + μ, with Borel measure μ and operator A that generates a symmetric Markov semigroup.
Klimsiak Tomasz
doaj +1 more source

